Напечатать документ Послать нам письмо Сохранить документ Форумы сайта Вернуться к предыдущей
АКАДЕМИЯ ТРИНИТАРИЗМА На главную страницу
Дискуссии - Наука

В. Б. Кудрин
Критерии различения алгоритмических и неалгоритмических задач

Oб авторе

В наших предыдущих публикациях мы уже рассматривали вопрос о статусе объектов математики, о существовании, наряду с числами, объектов нечисловой природы [Кудрин, 2013; 2019]. Существует мнение, что базовым объектом математики следует считать не число, а алгоритм. Таким образом, предлагают свести всё математическое творчество к решению алгоритмов, что открыло бы возможность автоматизации работы математика. Но можно ли свести все задачи к алгоритмам? Алгоритмически разрешимые задачи составляют лишь часть задач, решаемых математиками.

Алгоритмически неразрешимой задачей в Википедии называется "задача, имеющая ответ да или нет для каждого объекта из некоторого множества входных данных, для которой (принципиально) не существует алгоритма, который бы, получив любой возможный в качестве входных данных объект, останавливался и давал правильный ответ после конечного числа шагов".

При этом критерии различения разрешимых и неразрешимых задач в самой Теории алгоритмов не определены.

До сих пор не прекращаются попытки приверженцев создания "искусственного интеллекта" построить математическую модель мышления и памяти, редуцируя их к процессам, происходящим на молекулярном уровне, совершенно игнорируя принципиальную невозможность такой редукции, доказанную полвека назад Н.И. Кобозевым, и, независимо от него, Роджером Пенроузом. Лишь нередукционистская математика, названная автором этих строк "корреляционным исчислением", способна стать такой моделью, о чём уже неоднократно было сказано на страницах сайта Академии Тринитаризма! [Кудрин, 2019].

Согласно Р. Пенроузу, "как нам уже известно из предшествующих рассуждений и доказательств, любая (алгоритмическая) способность к пониманию, достаточно сильная для того, чтобы ее обладатель оказался в состоянии разобраться в тонкостях математических обоснований, в частности, гёделевского доказательства в представленном мною варианте, должна быть обусловлена процедурой настолько замысловатой и непостижимой, что о ней (или ее роли) не может знать даже сам обладатель этой способности. Наш прошедший через испытания естественного отбора гипотетический алгоритм, по всей видимости, достаточно силен, ведь еще во времена наших далеких предков он уже включал в область своей потенциальной применимости правила всех формальных систем, рассматриваемых сегодня математиками как безоговорочно непротиворечивые (или неопровержимо обоснованные, если речь идет о высказываниях. Сюда почти наверняка входят и правила формальной системы Цермело— Френкеля, или, возможно, ее расширенного варианта, системы (иначе говоря, с добавлением аксиомы выбора) — системы, которую многие математики сегодня рассматривают как источник абсолютно всех необходимых для обычной математики методов построения рассуждений, — а также все частные формальные системы, которые могут быть получены из системы посредством применения к ней процедуры гёделизации сколько угодно раз, и, кроме того, все другие формальные системы, которые могут быть получены математиками посредством тех или иных озарений и рассуждений — скажем, на основании открытия, суть которого состоит в том, что системы, полученные в результате упомянутой гёделизации, всегда являются неопровержимо обоснованными, или исходя из иных рассуждений еще более основополагающего характера. Такой алгоритм должен был также включать в себя (в виде собственных частных экземпляров) потенциальные способности к установлению тонких различий, отделению справедливых аргументов от ничем не обоснованных во всех тех, тогда еще не открытых, областях математики, которые сегодня оккупируют страницы специальных научных журналов. Все вышеперечисленные способности должны были оказаться каким-то образом закодированы внутри этого самого — гипотетического, непознаваемого или, если хотите, непостижимого — алгоритма, и вы хотите, чтобы мы поверили, что он возник исключительно в результате естественного отбора, в ответ на какие-то внешние условия, в которых нашим далеким предкам приходилось бороться за выживание. Конкретная способность к отвлеченным математическим рассуждениям не могла дать своему обладателю никаких непосредственных преимуществ в этой борьбе, и я со всей определенностью утверждаю, что для возникновения подобного алгоритма не существовало и не могло существовать никаких естественных причин.

Однако стоит нам допустить, что «способность понимать» имеет неалгоритмическую природу, как ситуация в корне меняется. Теперь уже нет необходимости приписывать этой способности какую-то неимоверную сложность, вплоть до полной непознаваемости или непостижимости. Более того, она может оказаться гораздо ближе к тому, что «математики, как им кажется, делают». Способность к пониманию представляется мне весьма простым и даже обыденным качеством. Ее сложно определить в каких-либо точных терминах, однако она настолько близка нам и привычна, что в принципиальную невозможность корректного моделирования понимания посредством какой бы то ни было вычислительной процедуры верится с трудом. И все же так оно и есть. Для создания подобной вычислительной модели необходима алгоритмическая процедура, так или иначе учитывающая все возможные варианты развития событий в будущем, — т. е. алгоритм, в котором должны быть, скажем так, предварительно запрограммированы ответы на все математические вопросы, с которыми нам когда-либо предстоит столкнуться. Если непосредственному программированию эти ответы не подлежат, то нужно обезпечить какие-то вычислительные способы для их отыскания. Как мы уже успели убедиться, если эти «вычислительные способы» (или «предварительное программирование») охватывают все, что когда-либо было или будет доступно человеческому пониманию, то сами они для человека становятся непостижимыми. Откуда же слепым эволюционным процессам, нацеленным исключительно на обезпечение выживания сильнейших, было «знать» о том, что такая-то, непознаваемо обоснованная, вычислительная процедура окажется когда-то в будущем способной решать абстрактные математические задачи, не имеющие абсолютно никакого отношения к проблемам выживания?" [Пенроуз, 2011].

В своей ранней работе "Тайны нового мышления" В.Ю. Татур отметил безуспешность попыток некоторых ученых описать квантовые процессы, пользуясь понятиями гильбертова пространства: "Здесь мы имеем явное противоречие между природным процессом и его математическим описанием, отражающим общепринятые представления о пространстве и времени как протяженности и длительности. Поэтому оказалось необходимым определить свойства того уровня материи, который является базисом для описания квантовых объектов как единых и неделимых. Очевидно, что его свойства должны присутствовать в каждой точке пространства, имеющего протяженность. Такие условия позволяют для описания этого уровня использовать математический аппарат нестандартного анализа, в котором в качестве объекта имеет существование монада (терминология Лейбница). Ее свойства таковы, что она может содержать актуально трансфинитное число элементов, и это множество никогда не пересечется с множеством другой монады. Таким образом, можно определить, что каждая точка гильбертова пространства представляет собой многоуровневую систему, в которой происходит движение квантового перехода с изменением энергетического состояния. Всякая макроквантовая система (биосфера, галактика и т. д.) представляет собой на определенном уровне монаду, и, таким образом, является единым и неделимым целым… В парадоксе Эйнштейна-Подольского-Розена нашли наиболее четкую формулировку следствия, вытекающие из нелокальности квантовых объектов, т.е. из того, что измерения в точке А влияют на измерения в точке B. Как показали последние исследования – это влияние происходит со скоростями, большими скорости электромагнитных волн в вакууме. Квантовые объекты, состоящие из любого количества элементов, являются принципиально неделимыми образованиями. На уровне Слабой метрики – квантового аналога пространства и времени – объекты представляют собой монады, для описания которых применим нестандартный анализ. Эти монады взаимодействуют между собой и это проявляется как нестандартная связь, как корреляция" [Татур, 1990].

Согласно классической теории вероятности, для независимых случайных величин коэффициент корреляции равен нулю. Это даёт возможность интерпретировать любое ненулевое значение корреляции в качестве меры информации, содержащейся в памяти монады. Новую математическую дисциплину, предметом которой будет корреляционное взаимодействие монад, можно будет назвать корреляционным исчислением. Корреляционное исчисление, несводимое к применяемому в математической статистике корреляционному анализу, станет надёжным методом решения не только алгоритмических, но и неалгоритмических задач, а главное – установит чёткие критерии различения одних задач от других.


Литература

Кудрин В.Б. Бытийный статус числа и вселенская информационная сеть – Saarbrücken: LAP LAMBERT Academic Publishing, 2013.

Кудрин В.Б. Пути преодоления редукционистской математики и создания математики целостности // «Академия Тринитаризма», М., Эл № 77-6567, публ.25195, 17.02.2019:

http://www.trinitas.ru/rus/doc/0016/001g/00163952.htm

Кудрин, Корреляция объектов нечисловой природы // «Академия Тринитаризма», М., Эл № 77-6567, публ.25868, 11.11.2019:

http://www.trinitas.ru/rus/doc/0016/001g/00164187.htm

Пенроуз Р. Тени разума. В поисках науки о сознании. Ижевск: ИКИ, 2011.

Татур В.Ю. Тайны нового мышления. М.:1990.



В. Б. Кудрин, Критерии различения алгоритмических и неалгоритмических задач // «Академия Тринитаризма», М., Эл № 77-6567, публ.26333, 23.04.2020

[Обсуждение на форуме «Публицистика»]

В начало документа

© Академия Тринитаризма
info@trinitas.ru