|
ВВЕДЕНИЕ
В современную эпоху стало особенно заметно всё более ускоряющееся развитие Цивилизации. Причём, в последнее время, всё меняется буквально на наших глазах, при жизни даже одного поколения. Для наглядного сравнения, здесь уместно привести выдержку из записок римского императора Марка Аврелия, сделанных им в 70-е годы II в. н. э.:
"...Да живи ты хоть три тысячи лет, хоть тридцать тысяч, только помни, что человек никакой другой жизни не теряет, кроме той, которой жив; и живет лишь той, которую теряет. Вот и выходит одно на одно длиннейшее и кратчайшее. Ведь настоящее у всех равно, хотя и не равно то, что утрачивается; так оказывается каким-то мгновением то, что мы теряем, а прошлое и будущее терять нельзя, потому что нельзя ни у кого отнять то, чего у него нет. Поэтому помни две вещи. Первое, что всё от века единообразно и вращается по кругу, и безразлично, наблюдать ли одно и то же сто лет, двести или бесконечно долго. А другое, что и долговечнейший и тот, кому рано умирать, теряет ровно столько же. Ибо настоящее - единственное, чего они могут лишиться, раз это и только это, имеют, а чего не имеешь, то нельзя потерять". [3]
Раньше люди даже не замечали какого-либо прогрессивного развития. Теперь же, не заметить его трудно. Каждый взрослый человек, в течении только своей жизни мог наблюдать как появились персональные компьютеры, Интернет, сотовые телефоны, а обладателем личного автомобиля теперь может стать практически каждый желающий и т. п. Причём, влияние прогресса на государственные и коммерческие структуры не меньше - везде компьютерный учёт, доступна оперативная связь с любым сотрудником, имеется возможность согласования документов не выходя из офиса и, что особенно важно, возможность автоматизации управления предприятием. Например, ERP- Enterprise resource planning. Внедрение таких систем позволяет управлять огромными предприятиями, филиалы которых рассредоточены по всей стране и миру, более эффективно. Сам факт внедрения подобных систем в такие крупные компании как "Связьинвест" и др. говорит о компьютеризации, автоматизации коммуникаций при управлении. Управление при этом осуществляется конкретными людьми, но данные становятся доступнее для всех сотрудников, информация о всех делах компании более структурированной, операции, выполняемые сотрудниками, более регламентированными (см. http://www.azsoft.ru/products.htm http://www.sap.com/cis/company/press/2005/future_sap.epx).
Электронная коммерция с доставкой товаров на дом также набирает всё большие обороты. Даже появился особый род денег - электронный. Так, например, первая трансакция в системе WebMoney была проведена в 1998 году, и с тех пор число регистраций и оборот ежегодно удваиваются. Российская по происхождению система превратилась в мировую.
Таким образом расстояния перестают быть существенной преградой для коммуникаций между людьми, организациями, странами. На межгосударственном уровне также происходят значительные изменения: в начале 90-х годов прошлого века начался резкий рост процессов глобализации и взаимопроникновения экономик разных стран. Развитые страны уже, по сути, все больше превращаются в некий гигантский управляющий офис. Происходить это могло, однако, лишь при условии одновременной индустриализации развивающихся стран, куда перемещается основное производство. Это ведёт к углублению международного разделения труда.
Наряду с ускоряющимся развитием Цивилизации, идет рост важнейших показателей - народонаселение, энергопотребление, накопление продуктов промышленного производства, рост научной информации - происходит экспоненциально. Поскольку такое развитие сопряжено с расходованием энергии и других ресурсов, ясно, что со временем они должны истощиться.
Социолог М. Сухарев в своей популярной работе "Взрыв сложности" представляет последовательные этапы этих изменений:
"В развитии общества видна еще одна закономерность - ускорение роста сложности со временем. Десятки тысяч лет жили на Земле племена, вооруженные копьями и луками. За несколько сотен лет мы проскочили промышленно-техническую цивилизацию. Сколько лет отпущено компьютерному этапу, не известно, но нынешняя скорость эволюции общества беспрецедентна.
Если мы экстраполируем эти тенденции в будущее, то получится, что скорость развития общества должна увеличиться настолько, что общественные формации начнут сменяться каждые пятьдесят, десять и меньше лет, а человечество в течение XXI века объединится в сверхгосударство". [2]
С другой стороны если современные тенденции развития нашей Цивилизации сохранятся, утверждают экологи и другие учёные, то уже в первых десятилетиях XXI века наступит критическая ситуация, вызванная истощением ресурсов, падением промышленного производства, резким сокращением количества пищи на душу населения при одновременном сильном загрязнении окружающей среды [33], [36] и [41].
"...Если сегодня не принять специальных мер, не изменить характер нашей цивилизации, (т.е. систем ценностей, которые определяют деятельность людей), то теряющая стабильность биосфера, даже без шоковых воздействий человека, перейдет в состояние, непригодное для его жизни.
...Потерю стабильности биосферы вряд ли можно отождествить с экологическим кризисом: кризис можно пережить, найти из него выход, а возврата биосферы в состояние, пригодное для жизни человека, быть не может!". [41]
Это означает, что современная техническая цивилизация может перестать существовать...
Всем достижениям технической цивилизации мы обязаны научно-техническому прогрессу и природным источникам энергии. Но запасы основных источников энергии (нефть, газ, уголь) конечны; срок их исчерпания - несколько десятилетий. А ведь что такое нефть, газ, уголь? Это полуразложившиеся останки первобытных бактерий и растений, копившиеся миллиарды лет. Т. е. это концентрированная солнечная энергия за указанный срок, которую мы используем уже несколько столетий (причём в последнее время всё интенсивнее) и которая кончается. Переход на повсеместное использование ядерной и термоядерной энергии если и возможен, всё равно, он не получится быстрым и безболезненным (а другие альтернативные источники энергии - солнечная, ветровая и гидроэнергия вряд ли смогут покрыть экспоненциально растущие потребности Цивилизации).
Как пишет в своей работе астрофизик Л.М. Гиндилис:
"Острота ситуации состоит в том, что коллапс должен наступить очень скоро, в первых десятилетиях XXI века. Поэтому, если бы даже человечество знало, как "повернуть" (или хотя бы приостановить) этот процесс, обладало бы средствами и волей для того, чтобы осуществить поворот уже сегодня, - у него просто не хватило бы времени, так как все негативные процессы обладают определенной инерцией, в силу которой их невозможно немедленно остановить...
Экономика Земли похожа на тяжело груженный транспорт, который на большой скорости мчится по бездорожью прямо к бездне. Видно, мы уже проскочили точку, где надо было свернуть, чтобы вписаться в "траекторию поворота". И затормозить тоже не успеваем. Положение усугубляется тем, что никто не знает, где находятся руль и тормоз. Тем не менее и экипаж, и пассажиры настроены весьма благодушно, наивно полагая, что, "когда понадобится", они разберутся в устройстве транспорта и смогут совершить необходимый маневр. Не думаю, что нарисованная картина означает непременную гибель человечества, хотя тяжкие испытания для нас, видимо, неизбежны. Если человечество сможет пройти через эти испытания, то характер развития должен коренным образом измениться". [1]
В настоящей статье, на основе анализа обширного научного и фактического материала, будет сформулирована гипотеза дающая ответы на обозначенные вопросы, и позволяющая спрогнозировать, как ближайшее будущее планеты, так и общее направление развития в весьма отдалённом времени; также предложено объяснение парадокса "молчания космоса".
1. ТЕХНОЛОГИЧЕСКАЯ СИНГУЛЯРНОСТЬ.
1.1 Ускорение развития компьютерной техники.
1.1.1 Сколько же лет "отпущено компьютерному этапу"? На симпозиуме VISION-21, который проводился в 1993 году Центром космических исследований NASA им. Льюиса и Аэрокосмическим институтом Огайо, прозвучало нашумевшее выступление математика и писателя Вернора Винджа. В нём, рассматривая перспективы развития компьютеров, Виндж предложил новый термин "Технологическая сингулярность":
"Ускорение технического прогресса - основная особенность XX века. Мы на грани перемен, сравнимых с появлением на Земле человека. Сугубая причина этих перемен заключается в том, что развитие техники неизбежно ведёт к созданию сущностей с интеллектом, превышающим человеческий. Наука может достичь такого прорыва разными путями (и это ещё один довод в пользу того, что прорыв произойдёт):
1. Компьютеры обретут "сознание", и возникнет сверхчеловеческий интеллект. (В настоящее время нет единого мнения о том, сумеем ли мы создать машину, равную человеку, однако, если это получится, несомненно, вскоре затем можно будет сконструировать еще более разумные существа).
2. Крупные компьютерные сети (и их объединенные пользователи) могут "осознать себя" как сверхчеловечески разумные сущности.
3. Машинно-человеческий интерфейс станет настолько тесным, что интеллект пользователей можно будет обоснованно считать сверхчеловеческим.
4. Биология может обеспечить нас средствами улучшения естественного человеческого интеллекта.
Первые три возможности напрямую связаны с совершенствованием компьютерного аппаратного обеспечения. Прогресс аппаратного обеспечения на протяжении уже нескольких десятилетий поразительно стабилен. Исходя из этой тенденции, я считаю, что интеллект, превосходящий человеческий, появится в течение ближайших тридцати лет. (Чарльз Платт заметил, что энтузиасты ИИ (ИИ - Искусственный интеллект) делают подобные утверждения уже лет тридцать. Чтобы не быть голословным, отделавшись относительной временной двусмысленностью, позвольте мне уточнить: я удивлюсь, если это случится до 2005 года или после 2030 года).
Каковы будут последствия этого события? Когда прогресс будет направляться интеллектом, превосходящим человеческий, он станет куда стремительнее.
...Такое событие аннулирует за ненадобностью весь свод человеческих законов, возможно, в мгновение ока. Неуправляемая цепная реакция начнет развиваться по экспоненте безо всякой надежды на восстановление контроля над ситуацией. Изменения, на которые, как считалось, потребуются "тысячи веков" (если они вообще произойдут), скорее всего, случатся в ближайшие сто лет.
Вполне оправданно будет назвать данное событие сингулярностью.
...И что же тогда случится через месяц или два (или через день-другой) после этого? Есть только одна аналогия, которую я могу провести - возникновение человечества. Мы очутимся в постчеловеческой эре. И несмотря на весь свой технический оптимизм, мне было бы куда комфортнее, если бы меня от этих сверхъестественных событий отделяли тысяча лет, а не двадцать..." [4].
Какой же прогресс "компьютерного аппаратного обеспечения" имеет ввиду Виндж? Откуда взялись столь радикальные выводы? Возможно, на взгляды Винджа повлияло неукоснительное следование всё ускоряющегося развития компьютерной техники так называемому "закону Мура".
1.1.2 В апреле 1965 года, примерно за три с половиной года до создания корпорации Intel, Гордон Мур, занимавший в ту пору должность директора отдела разработок компании Fairchild Semiconductors, в статье для журнала Electronics дал прогноз развития микроэлектроники, получивший вскоре название "закона Мура". Представив в виде графика рост производительности запоминающих микросхем, он обнаружил любопытную закономерность: новые модели микросхем разрабатывались спустя более-менее одинаковые периоды - 18-24 месяца - после появления их предшественников, а емкость их при этом возрастала каждый раз примерно вдвое. Если такая тенденция продолжится, заключил Мур, то мощность вычислительных устройств экспоненциально возрастет на протяжении относительно короткого промежутка времени.
График развития микропроцессоров соответствует "закону Мура" [47]
Наблюдение Мура, еще не возведенное в то время в ранг закона, впоследствии блестяще подтвердилось, а обнаруженная им закономерность наблюдается и в наши дни, причем с достаточной точностью, являясь основой для многочисленных прогнозов роста производительности. Например, за 30 лет, истекшие с момента появления микропроцессора 4004 в 1971 году и вплоть до выпуска процессора Pentium 4, количество транзисторов выросло более чем в 18000 раз: с 2300 до 42 миллионов.
Любопытное исследование "закона Мура" с позиций математики провёл В. П. Дьяконов:
"С позиций математики "закон Мура" представляется простым выражением:
N0 - количество транзисторов на кристалле в некоторый год (условно считаем его нулевым),
N(y) - число транзисторов на кристалле спустя лет,
yy - срок (в годах и долях года) за который число транзисторов возрастает вдвое
|
На рисунке представлен документ системы Mathcad 2002i с математической иллюстрацией "закона Мура"... Левый график задает число транзисторов как функцию от параметра yy (время удвоения) в линейном масштабе. При этом расчетный график имеет типично экспоненциальный вид".[5]
Утверждение, сделанное в 1965 году, за прошедшие годы нашло подтверждение во множестве областей как самой микроэлектроники, так и смежных с нею технических областей: согласно закону Мура усложняются и чипы оперативной памяти, и микропроцессоры, множится тактовая частота электронных компьютерных сердец, развиваются многие другие параметры и показатели. Даже размеры телескопов (площадь зеркала/линзы, чувствительность) подчиняются этому закону. [42]
За истекшие более сорока лет, скептики сотни раз предсказывали закону Мура скорую кончину, но... пока он продолжает действовать.
Несмотря на это, до математической точности "закону Мура" далеко: даже сложность микросхем он описывает весьма приблизительно, и сам Мур, проводя редакцию в 1975 г., был вынужден опираться на цифры, полученные посредством приближения. По своей сути, закон Мура является не фундаментальным законом природы, а, скорее, эмпирическим правилом и рано или поздно усложнение микроэлектронной продукции приведёт к исчерпанию возможностей существующих технологий (транзистор не может быть меньше атома).
1.1.3 В ведущей корпорации по производству процессоров (Intel) обнародована стратегия развития в ближайшем будущем. На 2007-й намечен переход на 45-нанометровый процесс, на 2009 год - внедрение 32-нанометрового, а в 2011 году настанет черед технологического процесса 22 нм.
Минимальная возможная величина - 4 нанометра. И если закон Мура будет продолжать исполняться, этот показатель будет достигнут уже к 2023 году. К тому времени или несколько позже, однако, размеры всех элементов транзистора достигнут атомарных размеров, и уменьшать их дальше будет просто невозможно, поэтому уже сейчас ищутся новые подходы к дальнейшему совершенствованию. Каким путем пойдет дальнейшее развитие - покажет время. Однако можно предположить, что вблизи 2023 года нас ожидает одна из критических точек. А, если исходить из того, что развитие идёт по принципу - прирост величины пропорционален самой величине (самоподобное развитие - подробнее о нём в п. 1.4 статьи), то после каждой критической точки, время, остающееся до критической даты (точки сингулярности), будет в два раза меньше длительности цикла. Т. е., длительность микропроцессорного цикла: 2023-1971=52. Сингулярность наступит соответственно - 2023+52/2=2049 г, что несколько позже, чем предсказал Вернор Виндж.
Интересно, что попытки вычислить точку сингулярности по другим известным событиям, следуя тому же методу, ведут к выводу что сингулярность действительно расположена где-то в интервале 2000 - 2050 годах (подобный интервал по историческим меркам весьма мал). Например:
- 1650 г. - О. Герике построил первую электростатическую машину (начало электротехники)
- 1904 г. - была построена первая двухэлектродная лампа-диод (начало радиотехники) и посчитать даты по тому же принципу, получим: 1904-1650=254. Тогда дата сингулярности - 1904+254/2=2031. Продолжая ряд начало радиотехники - начало микропроцессорной техники получаем, 1971-1904=67. Соответственно, 1971+67/2=2004.
Можно попробовать найти сингулярность и по альтернативным датам - истории счётных устройств. Так, первым механическим счетным устройством, которое существовало не на бумаге, а работало, была счетная машина, построенная в 1642 году Блезом Паскалем. Механический "компьютер" Паскаля мог складывать и вычитать.
Первая электромеханическая счетная машина, использующая электрическое реле, была сконструирована в 1888 г. Германом Холлеритом и уже в 1890 г. применялась при переписи населения.
Первой электронной вычислительной машиной принято считать машину ENIAC (Electronic Numerical Integrator and Computer - электронный числовой интегратор и вычислитель), разработанную в США. ENIAC содержал 17000 электронных ламп, 7200 кристаллических диодов, 4100 магнитных элементов и занимал площадь в 300 кв. метром. Он в 1000 раз превосходил по быстродействию релейные вычислительные машины и был построен в 1945.
Но всё же, какую дату считать днём рождения компьютеров? Штучно изготовленного, постоянно ломающегося лампового монстра или относительно доступные и массовые машины (как и предыдущие счётные устройства)? Вероятно серийно выпускаемые устройства, ведь их вклад в дальнейший прогресс оказывается уже существенным.
В 1965 г., фирма Digital Equipment выпустила первый мини-компьютер PDP-8 (размером с холодильник) на основе транзисторов и стоимостью всего 20 тыс. дол. (компьютеры 40-х и 50-х годов обычно стоили миллионы долл.). А уже в 1968 г. фирма Burroughs выпустила первый компьютер на интегральных схемах. В 1975 г. появились первые персональные компьютеры. Посчитаем даты сингулярностей для всех случаев:
1890-1642=248 1890+248/2=2014
1945-1890=55 1945+55/2=1972 или 1965-1890=75 1965+75/2=2002 или 1975-1890=85 1975+85/2=2017
Флуктуации точек реальных событий вокруг линии экспоненциального развития, вполне естественны - случай вносит свои коррективы. Таким образом ясно одно - следуя принципу самоподобного экспоненциального развития, при грубой оценке, сингулярность должна наступить между 2000 и 2050 годами.