![]() ![]() ![]() ![]() ![]() |
|
Объект внимания космологии – Вселенная в целом, тогда как нашему наблюдению доступно только содержимое сферы радиусом около 13,7 млрд. световых лет. Поэтому космология переполнена слишком сильными (фантастическими) гипотезами, которые, однако, зачастую рассматриваются космологами как «строго доказанные наукой» утверждения. Цель статьи – следуя принципу экономии сущностей упростить космологическую картину мира, очистив её от фантастических положений. Для этого в основу кладётся одна-единственная гипотеза, которую никак нельзя назвать фантастической: Вселенная фрактальна. Из неё выводится цепочка следствий: (1) Вселенная бесконечна; (2) она имеет нулевую массовую плотность; (3) расширяется, пережив Большой взрыв, не вся Вселенная, а лишь наша Метагалактика; (4) наша Метагалактика – чёрная дыра; (5) некоторое время назад она начала раскрываться; (6) ускорение космического расширения может быть объяснено без введения тёмной энергии с её вполне фантастическими свойствами; (7) если Земля не находится в центре нашей Метагалактики, то в ускорении космического расширения должна присутствовать сферическая асимметрия, что поддаётся наблюдению.
Ключевые слова: фрактальная Вселенная, фрактальная размерность, топологическая размерность, наша Метагалактика, Большой взрыв, чёрная дыра, космическое расширение, космическое ускорение, принцип экономии сущностей.
Введение
Согласно принятым сегодня представлениям, наблюдаемый мир зародился в нынешней его ипостаси около 13,7 млрд. лет назад в результате Большого взрыва и ограничен для нас горизонтом видимости: поскольку никакой сигнал не может распространяться быстрее света, постольку у нас в принципе не может быть информации о том, что находится на расстояниях, превышающих 13,7 млрд. световых лет. Стало быть, об устройстве Вселенной мы можем судить лишь по устройству того её маленького уголка (шарика), в котором находимся. Объект изучения космологии, таким образом, в принципе недоступен наблюдению, что, по-видимому, отличает её от других естественных дисциплин.
По этой причине космология, на взгляд некосмолога, перегружена чересчур сильными (фантастическими) гипотезами, каких не допускают в своей работе физики других областей, включая тех же космологов, когда они выходят за пределы космологии. Этим грешили, например, как мы увидим далее, даже такие выдающиеся физики, как Я.Б. Зельдович и А.Д. Сахаров, которые, легко выдвигая в космологии самые «смелые» (непроверяемые) гипотезы, не позволяли себе этого, работая в более «земных» областях физики.
Космологи, включая Я.Б. Зельдовича, к примеру, легко говорят, о замкнутой Вселенной, которая в начале Большого взрыва имела размер 10–33 см, т. е. на 20 порядков меньше атомного ядра, и которой закон сохранения энергии не запрещает возникновения «из ничего»: «Итак, общая теория относительности устраняет последнее препятствие на пути рождения Вселенной "из ничего". Энергия "ничего" равна нулю. Но и энергия замкнутой Вселенной равна нулю. Значит, закон сохранения энергии не противоречит образованию "из ничего" замкнутой Вселенной» [Зельдович, 1988: с. 21]. Иногда «из ничего» заменяется на более благозвучное «из вакуумоподобного состояния физической среды» [Новиков, 2001; Глинер, 2002], что, впрочем, сути дела не меняет.
А.Д. Сахаров выдвинул ещё более фантастическую, на мой взгляд, многолистную модель Вселенной, в которой «перелистывание» происходит во времени: «<…> Гипотеза "поворота стрелы времени" <…> тесно связана с так называемой проблемой обратимости. <…> Как я предположил (в 1966 году, и в более явной форме – в 1980 году), в космологических теориях, имеющих выделенную точку по времени, следует относить эти случайные начальные точки не к бесконечно удаленному прошлому (t → ∞), а к этой выделенной точке (t=0). Тогда автоматически в этой точке энтропия имеет минимальное значение, а при удалении от неё во времени вперед или назад энтропия возрастает. Это и есть то, что я назвал "поворотом стрелы времени". Так как при обращении стрелы обращаются все процессы, в том числе информационные (включая процессы жизни), то никаких парадоксов не возникает. <…> Поворот стрелы времени восстанавливает в космологической картине мира симметрию двух направлений времени, присущую уравнениям движения» [Сахаров, 1995: с. 296–297].
Советский физик-теоретик акад. М.А. Марков выдвинул в 1966 г. идею фридмонов (от фамилии создателя модели нестационарной Вселенной А.А. Фридмана) – скрытых в элементарных частицах макромиров: «Концепция Маркова основана на двух принципиально новых идеях. Первая из них состоит в том, что структурные части материи могут строиться из элементов не меньшей, а большей массы: избыточная масса в соответствии с законом сохранения массы–энергии, трансформируется в жёсткое излучение. <…> Вторая идея – это так называемая "ядерная демократия": способность элементарных частиц превращаться друг в друга, спонтанно исчезать и вновь возникать из вакуума. Классическая атомная теория не знала ничего подобного. Используя эти идеи, Марков предложил представить элементарные частицы в виде почти замкнутых автономных вселенных, которые он назвал фридмонами. Из-за большого гравитационного дефекта масс полная масса замкнутой вселенной равна нулю. А если она замкнута не полностью, то её масса может быть сколь угодно малой, например, равной массе элементарной частицы. С точки зрения внешнего наблюдателя эта малая масса будет заключена внутри сферы таких же микроскопических размеров, как и элементарная частица» [Лебедев (ред.) 2005: с. 382–383].
«Таким образом, это будет объект, который снаружи выглядит как элементарная микрочастица, а изнутри – как макросистема порядка нашей метагалактики. Значит, нет никакой гарантии, что каждая элементарная частица не скрывает внутри себя объекты такого типа» [Идлис, 1970: с. 390].
С этой гипотезой пересекается более общая концепция множественности миров/вселенных (Мультивселенной), история которой связана с именами Левкиппа (V в. до н. э.), Николая Кузанского (1410–1464), Дж. Бруно (1548– 1600) [Визгин, 2000; Никитаев, 2000: с. 142]. В XX в. эта концепция была воспроизведена в форме идеи параллельных вселенных Хью Эвереттом III в опубликованной в 1957 г. диссертации и введена в научный оборот десять лет спустя Б. Девиттом [Грин, 2013: с. 202–204]. Сегодня концепция множественности миров/вселенных, включающая в себя представления о дополнительных пространственных и/или временнЫх измерениях (!), широко обсуждается в космологии в самых разных вариантах:
«Задав пространство-время, можно построить соответствующий лист истории, пересекающий суперпространство. <…> Обратимся к детской игрушке, широко известной под названием "китайские коробочки". Открыв внешнюю коробочку, мы обнаруживаем другую коробку, открыв эту вторую коробку, мы обнаруживаем внутри неё ещё одну и так до тех пор, пока, наконец, на полу не будут разбросаны десятки таких коробок. Можно, наоборот, снова собрать коробки, вложив их друг в друга, чтобы восстановить первоначальную упаковку. <…> Классическая геометродинамика (т. е. общая теория относительности, ОТО. – С. Х.) в принципе представляет собой метод, алгоритм, правило для вычисления и построения листа истории, который пересекает все суперпространства» [Мизнер и др., 1977: с. 447–448].
«Идея о необходимости введения в рассмотрение дополнительного числа измерений пространства для системы более высокого порядка, чем Метагалактика, представляется интересной. Но нет необходимости введения гипотетического метапространства, так как подобное многообразие имеется в формализме ОТО» [Трофименко, 1991: с. 122].
«Многие космологи (А.Д. Линде и др.) предполагают, что существует несколько, может быть, даже очень много метагалактик, и все они вместе могут представлять какую-то новую систему, являющуюся частью некоторого ещё более крупного образования (может быть, принципиально иной природы), которое уже получило несколько названий (Метавселенная по И.С. Шкловскому, <…> Гипермир по К.Х. Рахматуллину) <…> в таких вселенных может быть не такое, как у нас, число пространственных измерений» [Генкин, 1994: с. 6].
А.Д. Сахаровым, высказана «гипотеза о существовании состояний физического континуума, включающих области с различной сигнатурой метрики, и о возникновении наблюдаемой Вселенной и бесконечного числа других Вселенных в результате квантовых переходов с изменением сигнатуры метрики. <…> Сигнатура здесь – число временнЫх координат. <…> Высказано предположение о существовании в нашей Вселенной наряду с наблюдаемым (макроскопическим) временнЫм измерением двух или другого чётного числа компактифицированных (сжатых до радиусов порядка или меньше планковской длины. – С. Х.) измерений» [Сахаров, 1995: с. 309].
«Согласно современной космологической концепции о макро-микросимметрии Вселенной, сама структурно неисчерпаемая Вселенная имеет по крайней мере в принципе циклически замыкающееся иерархическое строение, представляя собой связное множество всевозможных макромиров, с элементарными или даже субэлементарными частицами материи, содержащими в себе или скрывающими за собой целые собственные квазизамкнутые (относительно самостоятельные) макромиры» [Идлис, 1996: с. 145].
«Вселенная <…> является макро-микросимметричной и представляет собой бесконечное структурно неисчерпаемое множество всевозможных квазизамкнутых макромиров с многолистностью их общего пространственно-временнОго многообразия (хотя в каждом отдельном макромире своё пространство трёхмерно, а время одномерно)» [Идлис, 2003].
«<…> Многие из магистральных разработок в фундаментальной теоретической физике <…> приводят к размышлениям о той или иной разновидности параллельных вселенных. Маршрут нашего повествования в последующих главах проходит через девять вариаций на тему
Мультивселенной (выделено мной. – С. Х.). В каждой из них наша Вселенная предстаёт как часть неожиданно более масштабного целого, но сложность этого целого и природа составляющих его вселенных весьма отличаются от главы к главе. В одних картинах параллельные вселенные разделены колоссальными расстояниями или промежутками времени; в других они ведут призрачное существование в считанных миллиметрах от нас; в-третьих же сама попытка говорить об их местоположении наивна и лишена всякого смысла. Подобное многообразие возможностей обнаруживается и в тех законах, которые управляют этими параллельными вселенными. Где-то эти законы – такие же, как в нашей Вселенной; в других вселенных они выглядят иначе, но имеют похожую родословную; в-третьих, они по форме и структуре не похожи ни на что из того, с чем нам доводилось иметь дело прежде» [Грин, 2013: с. 14].
Напомним читателю, что мы в принципе не можем выглянуть не только что за пределы «нашей Вселенной», но и за горизонт видимости радиусом около 13,7 млрд. световых лет: «<…> Миры за пределами нашего космического горизонта недостижимы» [Грин, 2013: с. 181]. Соответственно, утверждать чтолибо о том, что происходит вне «нашей Вселенной», мягко говоря, крайне затруднительно. Поэтому, при всей увлекательности идеи Мультивселенной, она проходит по ведомству научных спекуляций, которые, играя в науке позитивную роль, прокладывают новые пути. Вот только не следует преподносить их как «последние достижения физики», проверяемые «точнейшими наблюдениями», как это делают некоторые горячие головы:
«Теория рождения Вселенной и другие космологические проблемы ныне разрабатываются на основе последних достижений физики и проверяются точнейшими астрономическими наблюдениями. Никакие измышления в принципе в космологии невозможны» [Новиков, 2001: с. 886].
Здесь, полагаю, нужен более трезвый взгляд на вещи: «Обсуждение параллельных вселенных в большой степени умозрительно. Нет никаких экспериментов или наблюдений, свидетельствующих о том, что какой-либо из вариантов этой идеи реализуется в природе (выделено мной. – С. Х.)» [Грин, 2013: с. 18].
«Статус теорий с параллельными вселенными <…> находится под большим вопросом. <…> Хотя многие физики с готовностью высказывают своё мнение "за" или "против" разных схем мультивселенных, большинство признают, что только будущие открытия – теоретические, экспериментальные и наблюдательные – определят, какие из этих идей останутся в науке (выделено мной. – С. Х.)» [Грин, 2013: с. 202].
По разряду научных спекуляций, чрезмерно серьёзно, на мой взгляд, рассматриваемых научным истеблишментом, проходит и пересекающаяся с концепцией Мультивселенной теория струн. Зародившись на рубеже 1960– 1970-х гг., эта теория развивается сегодня большим числом физиков-теоретиков. Представляя собой одно из основных направлений разработки квантовой теории гравитации, она основана на гипотезе, согласно которой всё разнообразие элементарных частиц и фундаментальных взаимодействий возникает в результате разного рода колебаний и взаимодействий ультрамикроскопических квантовых струн, размещённых внутри элементарных частиц на масштабах порядка планковской длины 10−35 м.
Характерной чертой теории струн является то, что она требует, чтобы Вселенная имела дополнительные измерения, иначе в этой теории появляются отрицательные вероятности:
«<…> Теория струн требует, чтобы Вселенная имела дополнительные измерения. Вот почему это так <…>. На начальном этапе развития теории струн физики обнаружили, что некоторые вычисления приводят к появлению отрицательных вероятностей, <…> находящихся вне области допустимых значений. <…> Физики искали и нашли причину появления этих неприемлемых результатов. <…> Отрицательные вероятности возникают из-за несоответствия между требованиями теории и тем, что, как кажется, диктует реальность: расчёты показали, что если бы струны могли колебаться в девяти независимых пространственных направлениях, все отрицательные вероятности исчезли бы. <…> Поскольку струны так малы, они могут колебаться не только в больших, протяжённых измерениях, но и в крошечных свёрнутых. Таким образом, мы можем удовлетворить требованию о девяти пространственных измерениях, предъявленному к нашей Вселенной теорией струн, предположив <…>, что в дополнение к трём привычным, протяжённым пространственным измерениям Вселенная имеет шесть свёрнутых. В результате теория струн, которая была на грани исключения из мира физических реальностей, будет спасена. <…> Для того чтобы теория струн стала непротиворечивой, Вселенная должна иметь девять пространственных измерений и одно временное – итого всего десять» [Грин, 2011: с. 138–139].
«<…> Геометрия дополнительных измерений определяет фундаментальные физические свойства, такие как массы частиц и заряды, которые мы наблюдаем в нашем обычном трехмерном пространстве <…> фундаментальные свойства Вселенной в значительной степени определяются размерами и формой дополнительных измерений. Этот результат представляет собой одно из наиболее глубоких следствий теории струн» [Грин, 2011: с. 141].
Подобно теории Мультивселенной, теория струн на сегодняшний день не имеет экспериментального подтверждения: «В отличие от многих других научных открытий, то, о чём говорится здесь (т. е. теория струн. – С. Х.), не является окончательно разработанной теорией, имеющей надёжное экспериментальное подтверждение и полностью принятой научным сообществом» [Грин, 2011: с. 21]. «На сегодняшний день наиболее вероятно, что даже самые многообещающие положительные результаты экспериментов не смогут определённо подтвердить правоту теории струн, а отрицательные результаты, скорее всего, не смогут её опровергнуть» [Грин, 2013: с. 107]. «<…> Теория струн в значительной степени умозрительна» [Грин, 2013: с. 287].
Сами космологи, находясь внутри космологии, похоже, не замечают всей странности (фантастичности) своих гипотез. Понятно, что они опираются на некие теоретические соображения, однако проверить их нет никакой возможности.
Отказ от некоторых слишком сильных гипотез позволил бы упростить космологическую картину мира без ущерба для объяснения данных наблюдения в пределах горизонта видимости. Утверждая это, мы исходим из принципа экономии сущностей (бритвы Оккама). При равной степени логичности и правдоподобия сравниваемых теорий, говорит он, ближе к истине (продуктивнее) та из них, что кладёт в основание 1) меньшее количество сущностей и 2) менее сильные (менее фантастические) сущности.
Мы будем опираться здесь на этот принцип предельно открыто, как на основной рабочий инструмент, поскольку не видим иного способа построения достаточно трезвой (нефантастической) космологической картины мира. В основу нашего рассмотрения будет положена одна-единственная гипотеза, которую при самом строгом к ней отношении трудно назвать фантастической: Вселенная фрактальна.
На протяжении всего ХХ в. космологи грешили явным или неявным отождествлением нашей Метагалактики со всей Вселенной. Да и сегодня ещё многие космологи не очень чётко их разводят, не только говоря о расширении Вселенной, модели горячей Вселенной, ускорении расширения Вселенной и т. д. На мой взгляд, перенос данных о космическом расширении, наблюдаемом внутри нашего уголка Вселенной, на всю Вселенную не имеет оснований, тезис о Большом взрыве Вселенной – это пример слишком сильной космологической гипотезы.
Если принять гипотезу о фрактальности Вселенной, то из неё следует, и я берусь это доказать, что массовая плотность Вселенной равна нулю и, стало быть, она не может вся ни расширяться, ни сжиматься, откуда вытекает, что расширяется не вся Вселенная, но только наша Метагалактика. Чтобы доказать это, значительную часть статьи придётся посвятить фракталам, в понимании которых сегодня в научной литературе, как мне представляется, существует существенный пробел, вызванный недостаточным осмыслением понятия фрактальной размерности.
1. Фракталы
Фракталы отличаются от других объектов необычной геометрией. Физики привыкли к объектам, обладающим обычной, так называемой топологической размерностью, которая выражается целыми числами – 0 (для точки), 1 (для линии), 2 (для поверхности), 3 (для объёма) и т. д. Фрактальная же структура представляет собой всюду разрывное множество точек, не являющееся – из-за его разрывности в каждой точке – ни линией, ни поверхностью, ни объёмом. Его размерность определяется, вообще говоря, нецелым числом.
Последнее обстоятельство – что фрактальная структура обладает необычной размерностью – у всех на устах. Однако никто, насколько мне известно, не замечает, что массовая плотность (плотность массы) фрактальных структур, расположенных в нашем трёхмерном пространстве, если это только «настоящие» фракталы, обладающие необычной размерностью, равна нулю. И не замечают этого потому, что не осмысливают должным образом определения фрактальной размерности, которое даётся математиками. Мы далее заполним этот пробел, но сначала поясним на иллюстративном примере, каким это образом структура, расположенная в нашем трёхмерном пространстве, может иметь нулевую массовую плотность и «странную» размерность.
1.1. «Бумажное» множество
Представим себе бесконечно тонкий лист бумаги, которым мы пытаемся заполнить комнату, вырезая из него бесконечно узкую полоску. Такой лист бумаги – двухмерный, его объем и масса равны нулю. Понятно, что заполнить им трёхмерный объём толком не удастся, бумага образует «всюду пустую» структуру нулевой плотности. Вот эта «бумажная» структура и может служить образом фрактала.
Чтобы наша «бумажная» структура была более точным подобием фрактала, необходимо ещё разорвать вырезаемую из листа бумаги бесконечно узкую полоску «на точки», так чтобы каждая следующая точка оказывалась на некотором случайном расстоянии от предыдущей в случайном же направлении от неё, а все точки располагались бы, тем не менее, не совсем случайным образом, образуя иерархизованную структуру, так чтобы можно было говорить о «детерминированном хаосе».
Объём трёхмерного тела измеряется трёхмерными единицами измерения, т. е. кубиками единичного объёма: мы подсчитываем, сколько таких кубиков помещается в измеряемом теле. Площадь двухмерной фигуры – квадратиками единичной площади, длина линии – единичными отрезками. А что будет, если использовать единицу измерения, размерность которой не совпадает с размерностью измеряемого множества?
Если для измерения площади листа бумаги использовать одномерные отрезки единичной длины, то число таких отрезков, требующихся, чтобы заполнить весь лист, равно бесконечности. Если с той же целью употребить трёхмерные кубики, то для числа таких кубиков, покрывающих лист, получится значение, равное нулю (площадь бесконечно тонкого листа бумаги не изменится, если его скомкать; вот мы его, скомкав, и поместим в кубик, в котором он займёт нулевой объем). То единственное значение размерности единицы измерения, при котором мера множества отлична от нуля и бесконечности, называется размерностью множества по Хаусдорфу, или фрактальной размерностью. Для листа бумаги размерность Хаусдорфа равна 2. Для «бумажного» фрактала, о котором мы здесь говорим и который размещён в трёхмерном пространстве, размерность Хаусдорфа меньше 3.
Как видим, массовая плотность нашего «бумажного» множества, измеренная, как это делается в нашей повседневной и научной жизни, в трёхмерных «кубиках», т. е. в «кубиках» размерности пространства, в котором мы живём и в котором расположено «бумажное» множество, равна нулю. Теперь о фракталах более строго.
1.2. Фрактальная (собственная) размерность фрактала
Фрактальные структуры известны в научной литературе, начиная с 1963 г. Они появились под названием «странных аттракторов» в исследованиях динамического хаоса в пионерской работе Э.Н. Лоренца [Lorenz, 1963; Хайтун, 2007: с. 143–147]. Об их необычной размерности никто пока не знал. Множества с размерностью, отличной от топологической, которые и были отождествлены со странными аттракторами, ввёл в исследования динамического хаоса Б. Мандельброт [Mandelbrot, 1975], назвав их фрактальными (от лат. fractus – иррегулярный, фрагментарный) и используя понятие обобщённой размерности, отличающейся в общем случае от целого числа, которое было введено задолго до того Ф. Хаусдорфом [Hausdorff, 1918]. В разд. 1.6 мы увидим, что, строго говоря, со странными аттракторами могут быть отождествлены только стохастические фракталы.
Чтобы понять, почему массовая плотность фракталов, расположенных в нашем трёхмерном пространстве, равна нулю, приведём строгое определение размерности Хаусдорфа, из которого вытекает, как мы увидим, что нулю равна мера фрактала, измеренная в единицах топологической размерности. Определение размерности Хаусдорфа воспроизведём по обзору [Farmer et al., 1983]. Предварительно поясним, что мера множества – это суммарный «объём» пространства, занимаемый точками множества за вычетом пустых участков пространства между ними.
Philosophy & Cosmology 2014 (Vol. 12), с.119-154
![]() |