Напечатать документ Послать нам письмо Сохранить документ Форумы сайта Вернуться к предыдущей
АКАДЕМИЯ ТРИНИТАРИЗМА На главную страницу
Институт Золотого Сечения - Семинары online

И.С. Ткаченко, М.И. Ткаченко
Представление натурального числа в иррационально-троичной системе, построенной на свойствах функций Фибоначчи и функций Люка

Oб авторе - И.С. Ткаченко
Oб авторе - М.И. Ткаченко


Аннотация. Вопрос о возможности представления натурального числа в виде сумм чисел последовательности Фибоначчи возник, как один из вариантов, в связи с созданием Фибоначчи-компьютера. Это в определенном смысле, является в последнее время особенно актуальным и интересным для математиков и для кибернетиков, создающих устройства преобразования сигналов. Провести исследование в этом направлении на основе свойств функций Фибоначчи и функций Люка возникло у нас еще в прошлом веке. Полученные результаты представлены в работе [1], а с учетом последних усовершенствований представляем их вниманию читателей в таком вот варианте.

Введение. В статье «Фибоначчиева система счисления» [Wikipedia.org] утверждается, что «Прямой связи между представлением натуральных чисел в системе золотого сечения и в Фибоначчиевой не имеется». Вместе с этим отметим, что Д. Бергман в 1957 году предпринял попытку представить натуральное число через систему счисления с иррациональным основанием ( ф = 1,618033989…. — число Фидия)[goldenmuseum.com]. К этому же добавим, что согласно теореме Zeckendorf [Wikipedia.org/…/Zeckendorf’s theorem] для натурального числа N существует сумма чисел Фибоначчи.


           (1)


где Fni — есть ni-е число Фибоначчи, и при этом

ni 2 , ni+1 > ni + 1 , то есть в (1) не включается два последовательных числа.


Указывается также, что теорема состоит из двух частей:

1. Существование: каждое натуральное число N имеет представление Zeckendorf (1).

2. Уникальность: нет натурального N, которое имеет два различных представления Zeckendorf (1).

При представлении числа N, удовлетворяющего условиям теоремы, используется так называемый «жадный алгоритм».


Цель исследования. Проанализировав свойства последовательностей чисел Фибоначчи и чисел Люка, нами были введены соответствующие им функции [1, 2] по аналогии с гиперболическими функциями, которые моделируют при целочисленных значениях t, разбиение их на две пары последовательностей (табл. 1).


Полный текст доступен в формате PDF (391Кб)


И.С. Ткаченко, М.И. Ткаченко, Представление натурального числа в иррационально-троичной системе, построенной на свойствах функций Фибоначчи и функций Люка // «Академия Тринитаризма», М., Эл № 77-6567, публ.17268, 29.01.2012

[Обсуждение на форуме «Публицистика»]

В начало документа

© Академия Тринитаризма
info@trinitas.ru

Warning: include(/home/trinita2/public_html/footer.php) [function.include]: failed to open stream: No such file or directory in /home/trinita2/public_html/rus/doc/0232/013a/02322141.htm on line 125

Warning: include() [function.include]: Failed opening '/home/trinita2/public_html/footer.php' for inclusion (include_path='.:/opt/alt/php53/usr/share/pear:/opt/alt/php53/usr/share/php') in /home/trinita2/public_html/rus/doc/0232/013a/02322141.htm on line 125