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Расширенная аннотация 

 В конце 20-го века сразу несколько исследователей из разных стран (Вера Шпинадель, 
Джей Капрафф, Мидхат Газале, Александр Татаренко и др.) независимо друг от друга обратили 
внимание на следующее обобщение рекуррентного соотношения Фибоначчи: Fm(n+2) = 
mFm(n+1) + Fm(n), которое, в свою очередь, приводит к следующему обобщению уравнения 
золотой пропорции:  x2 – mx – 1 = 0, где m – положительное действительное число, названное 
Мидхатом Газале «гномонным» числом или порядковым числом рекуррентного соотношения 
Фибоначчи. Будем называть положительный корень введенного выше квадратного уравнения 

обобщенным золотым сечением порядка m 
2

4 2 mm
m

++
=Φ . В своей книге «Гномон. От 

фараонов до фракталов» [9], опубликованной в 1999 г. и переведенной на русский язык в 2002 
г., Газале вывел следующую замечательную формулу, которая задает аналитически обобщенные 
числа Фибоначчи Fm(n) в диапазоне значений  n = 0, ±1, ±2, ±3, ... : 
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Следует отметить, что выведенная формула задает бесконечное количество новых 
рекуррентных последовательностей, подобных числам Фибоначчи, так как каждому m 
соответствует своя числовая последовательность. Некоторые из них приведены в таблице ниже: 

Обобщенные  числа Фибоначчи порядка m=1, 2, 3, 4 
m Φm -5 -4 -3 -2 -1 0 1 2 3 4 5 
1 

2
51+  

5 -3 2 -1 1 0 1 1 2 3 5 

2 1+ 2  29 -12 5 -2 1 0 1 2 5 12 29 
3 

2
133+  

109 -33 10 -3 1 0 1 3 10 33 109 

4 52 +  305 -72 17 -4 1 0 1 4 17 72 305 
Заметим, что второй ряд этой таблицы (m=1) задает классические числа Фибоначчи, в то время 
как третий ряд (m=2) задает еще один замечательный числовой ряд, известный под названием 
числа Пелли.     
 Эта формула по праву может быть отнесена к разряду выдающихся математических 
формул наряду с формулами Эйлера, формулами Муавра, формулами Бине и т.д. Автор 
настоящей статьи предлагает назвать эту формулу формулой Газале.  
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 Именно формула Газале вдохновила автора на получение следующих новых 
математических результатов: 

(1) Выведена  следующая формула:  
n

m
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mm nL −Φ−+Φ= )1()( .  
Эта формулу автор назвал формулой Газале для обобщенных чисел Люка порядка m, поскольку 
автор выполнил лишь техническую работу при выводе данной формула. Заметим, что эта 
формула задает бесконечное количество новых рекуррентных последовательностей, частными 
случаями которых являются классические числа Люка (m=1) и числа Пелли-Люка (m=2). 
Некоторые из этих числовых последовательностей приведены в таблице ниже: 

Обобщенные числа Люка порядка  m=1, 2, 3, 4 
m Φm -5 -4 -3 -2 -1 0 1 2 3 4 5 
1 

2
51+  

-11 7 -4 3 -1 2 1 3 4 7 11 

2 1+ 2  -82 34 -14 6 -2 2 2 6 14 34 82 
3 

2
133+  

-393 119 -36 11 -3 2 3 11 36 119 393 

4 52 +  -1364 322 -76 18 -4 2 4 18 76 322 1364 
 

(2) Следующим научным результатом является введение нового класса гиперболических 
функций Фибоначчи и Люка, основанных на формулах Газале: 

Гиперболический синус Фибоначчи порядка  m 
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Гиперболический косинус Фибоначчи порядка m 
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Гиперболический синус Люка порядка m 
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Гиперболический косинус Люка порядка m 
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Заметим, что эти гиперболические функции являются обобщением симметричных 
гиперболических функций Фибоначчи и Люка, введенными Стаховым и Розиным в 2005 г. [14]. 
 Трудно вообразить, что количество новых гиперболических функций Фибоначчи и Люка 
бесконечно, так как каждому m (m – положительное действительное число) соответствует свой 
вариант гиперболических функций. Новый класс гиперболических функций представляет собой 
фундаментальный интерес для  гиперболической геометрии и теоретической физики и может 
привести к переосмысливанию «гиперболической геометрии Лобачевского» и «пространства 
Минковского» (гиперболической интерпретации специальной теории относительности 
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Эйнштейна).       

(3) В развитие Q-матицы Q =
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Хоггаттом, создателем Фибоначчи-Ассоциации, в настоящей работе введено понятие Qm-
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Фибоначчи порядка m. Доказано следующее е свойство Qm-матрицы:  
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(4) В работе [26] автором введен новый класс квадратных матриц, основанных на 
использовании симметричных гиперболических функций Фибоначчи (Стахов, Розин, 2005). 
Исследовании Qm-матриц привело к открытию нового класса квадратных матриц, основанных 
на использовании гиперболических функций Фибоначчи порядка m: 
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(5) В работе [26] автором введен новый криптографический метод, основанный на 
использовании «золотых» матриц и названный «золотой» криптографией. В настоящей работе 
предложен усовершенствованный метод  «золотой» криптографии, основанный на 
использовании гиперболических функций Фибоначчи порядка m. Новым свойством 
усовершенствованного метода является наличие двух непрерывных переменных x и m, которые 
могут быть использованы в качестве «криптографических ключей», что расширяет возможности 
криптографической зашиты.  
 Таким образом, формулы Газале и вытекающие из них новые математические результаты 
в области гиперболических функций Фибоначчи и Люка и «золотых» матриц, полученные в 
настоящей работе, открывают интересные перспективы для создания новых гиперболических 
моделей Природы (теоретическая физика) и новых методов кодирования и криптографии 
(компьютерные науки).   

 
Abstract 

We consider the Gazale formulas, which are a wide generalization of the Binet and Pell formulas, and a 
new class of the “golden” hyperbolic functions, which a wide generalization of the symmetric 
hyperbolic Fibonacci and Lucas functions (Stakhov and Rozin, 2005). Also we consider a new class of 
the “golden” matrices being a wide generalization of the “golden” matrices (Stakhov, 2006). The 
improved cryptographic method, which is a generalization of Stakhov’s “golden” cryptographic 
method, follows from the new “golden” matrices.    

 
1. Introduction 
 

 The present paper is devoted to the generalization and development of a number of fundamental 
results of the contemporary Fibonacci numbers theory [1-28]. And we will begin from the review of 
these fundamental notions and concepts. 
 

Fibonacci and Lucas numbers 
 

 Consider the following recursive relation  
F(n) = F(n-1) + F(n-2)    (1) 
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where n = 0, ±1, ±2, ±3, ... . For the seeds  
F(0) = 0, F(1) = 1      (2) 

the recursive relation (1) sets the classical Fibonacci sequence expanded to the side of the negative 
values of n:   

... -21, 13, -8,  5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, ...    (3) 
This sequence is symmetric relative to the number 0, if we take into consideration that every even term 
of the sequence (3) from the left of the number 0 is negative.  
 Also we can consider the recursive relation  

L(n) = L(n-1) + L(n-2)     (4) 
For the seeds  

L(0) = 2, L(1) = 1,      (5) 
the recursive relation (4) sets the classical Lucas sequence expanded to the side of the negative values 
of n:   

... 47, -29, 18,  -11, 7, -4, 3, -1, 2, 1, 3, 4, 7, 11, 18, 29, 47, ...    (6) 
This sequence is symmetric relative to the number 2, if we take into consideration that every odd term 
of the sequence (6) from the left of the number 2 is negative.  
 
1 Academician of the International Higher Education Academy of Sciences 

 
Binet formulas 

 
 As is known, the recursive relation (1) can be represented in the form: 
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For the case n → ∞ the expression (7) is reduced to the following quadratic equation:  
x2 – x – 1 = 0      (8) 

The equation (8) has two roots: 
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They are connected by the following correlation: 
x1 + x2 = 1     (10) 

 The following equality follows from (10):  
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The roots (9) are the “launching pad” for the derivation of Binet formulas for Fibonacci and Lucas 
numbers: 
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The formulas (12), (13) were derived by Binet in 1843, although the result was known to Euler, Daniel 
Bernoulli, and de Moivre more than a century earlier. In particular, de Moivre derived these formulas 
in 1718.  
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Q-matrix 
 

 Verner Hoggatt developed in [3] a theory of Fibonacci Q-matrix: 
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which is connected with the Fibonacci numbers (3) by the following formula:  
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It is proved in [3] that the determinant of the matrix (15) coincides with the famous Cassini 
formula  

nn nFnFnFQDet )1()()1()1( 2 −=−−+=      
that was named in honor of the well-known 17-th century astronomer Giovanni Cassini (1625-1712) 
who first derived this formula.  
 Recently in the works of Alexey Stakhov and Boris Rozin the classical results in the Fibonacci 
numbers theory were generalized [11-28]. Consider some of these generalizations.  
  

Hyperbolic Fibonacci and Lucas functions 
 

 Stakhov and Rozin introduced in [14] the so-called symmetric hyperbolic Fibonacci and Lucas 
functions  

Symmetric hyperbolic Fibonacci functions 
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Symmetric hyperbolic Lucas functions  
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 The Fibonacci and Lucas numbers (3), (6) are determined identically through the symmetric 
hyperbolic Fibonacci and Lucas functions (16), (17) as follows: 
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The “golden” Q-matrices and the “golden” cryptography 

Stakhov developed in [26] a new class of the square matrices called “golden” matrices: 
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These matrices were used by Stakhov for the development of a new kind of cryptography called the 
“golden” cryptography [26].   

The generalized Fibonacci numbers of the order m 

 In the last years many researchers (Vera W. de Spinadel [8], Jay Kappraff [9], Midhat J. Gazale 
[10] and others) independently one from another introduced the generalized Fibonacci numbers based 
on the following recursive relation:  

Fm(n+2) = mFm(n+1) + Fm(n)     (20) 
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Fm(0) = 0, Fm(1) = 1       (21) 
where m is a positive real number.  
 The Egyptian mathematician Midhat J. Gazale in his remarkable book [10] called new recursive 
sequences based on (20), (21) the generalized Fibonacci sequence of the order m. 
 As example we can see in Table 1 the different Fibonacci sequences Fm(n) of the orders m=1, 2, 

2
1  for the values n from -4 to 5.  

Table 1. The Fibonacci sequences Fm(n) 
m/n -4 -3 -2 -1 0 1 2 3 4 5 
1 -3 2 -1 1 0 1 1 2 3 5 
2 -12 5 -2 1 0 1 2 5 12 29 

1/ 2  -5/(2 2 ) 3/2 -1/( 2 ) -1 0 1 1/ 2  3/2 5/(2 2 ) 11/4 
  We can see from Table 1 that for the case m=1 the Fibonacci sequence F1(n) coincides with the 
classical Fibonacci numbers  (3) and for the case m=2 the Fibonacci sequence F2(n) coincides with the 
Pell numbers.  
 The main purpose of the present paper is to use the recursive relation (20), (21) for the 
generalization and development of all the above mathematical results (1)-(21). In particular, basing on 
(20), (21), we have derived the so-called Gazale formulas, then, basing on Gazale  formulas,  we have 
introduced a new class of the hyperbolic Fibonacci and Lucas functions, which are a generalization of 
(16), (17). Also basing on new hyperbolic Fibonacci and Lucas functions, we have developed the 
improved method of the “golden” cryptography.  
 
2. Gazale formulas 
 
 Represent the recursive relation (1) in the form: 
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For the case n → ∞ the expression (22) is reduced to the following quadratic equation:  
x2 – mx – 1 = 0     (23) 

The equation (23) has two roots, a positive root 
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If we sum term-wise the roots (24) and (25) we will get: 
x1 + x2 = m     (26) 

 If we substitute the roots (24), (25) into Eq. (23) instead x, we will get the following identities: 
11
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If we multiply or divide repeatedly all terms of the identities (27) and (28) by x1 and x2, respectively, 
we will get the following identities: 
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where n=0, ±1, ±2, ±3, … . 
 Gazale denoted the positive root x1 by Φm and named it a “start point number” and the number 
m a “gnomonic number” of the number Φm. A sense of such definition becomes clear below.  
 The “start point number” Φm has the following analytical expression: 
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 Let us express now the root x2 through the “start point number” Φm. After simple transformation 
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Substituting Φm instead x1 and 
mΦ

−
1 instead x2 in (26) we will get the following identity: 
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where Φm  is given by (31) and 
mΦ

1  is given by the formula: 
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 Notice that for the case m=1 the formula (31) is reduced to the classical golden ratio  

2
51

1
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=Φ . Basing on this fact we will name Gazale’s “start point number” Φm a generalized golden 

ratio of the order m.  
 Write the obvious property of the generalized golden ratio of the order m: 
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 Using the identity (29) we can write the following identity for the number Φm: 
21 −− Φ+Φ=Φ n

m
n
m

n
m m ,     (36) 

where n=0, ±1, ±2, ±3, … . 
 

Two surprising representations of the generalized golden ratio Φm : 
 

 For the case n=2 the identity (36) can be represented in the form:  
mm mΦ+=Φ 12      (37) 

Basing on (37) we can write the following representation of the generalized golden ratio Φm:  

mm mΦ+=Φ 1      (38) 
Substituting instead  Φm in the right-hand part of (38) the same expression (38) we can write: 

mm m Φ++=Φ 11      (39) 

Continuing this process ad infinitum, that is, substituting repeatedly instead Φm in the right-hand part of 
(39) the expression (38), we can get the following surprising representation of the generalized golden 
ratio Φm: 
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...111 mmmm +++=Φ     (40) 
 Represent now the identity (37) in the form: 
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Substituting instead Φm in the right-hand part of (41) the same expression (41) we can write: 
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Continuing this process ad infinitum, that is, substituting repeatedly instead Φm in the right-hand part of 
(42) the expression (41), we can get the following surprising representation of the generalized golden 
ratio Φm: 
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A derivation of Gazale formula  

 
 In the formulas (20), (21) the numbers Fm(n) are defined by recursion.  We can express the 
numbers Fm(n) in explicit form by using the generalized golden ratio Φm.  
 We will look for the analytical expression of the generalized Fibonacci number Fm(n) through 
the roots x1 and x2 in the form:  
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Taking into consideration that Fm(0)=0 and Fm(1)=1 we can rewrite the system (45) as follows: 
k1 = - k2       (46) 

and  

111
111 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Φ

+Φ=
Φ

+Φ
m

m
m

m kkk    (47) 

Taking into consideration (46) and (47), we can find the following expressions for the coefficients k1 
and k2:  

21
4

1
m

k
+

= ; 
22

4
1

m
k

+
−=    (48) 

 Taking into consideration the expressions (48) we can write the expression (44) as follows:  
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1)( −
+

=
+

−
+

=   (49) 
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Taking into consideration that x1 = Φm and 
m

x
Φ

−=
1

2 , we can rewrite the formula (49) as follows: 

24
)/1()(

m
nF

n
m

n
m

m
+

Φ−−Φ
=     (50) 

or 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++

+
=

nn

m
mmmm

m
nF

2
4

2
4

4
1)(

22

2
  (51) 

 For the partial case m=1 the formula (51) is reduced to the Binet formula (12).  
 For the case m=2 the formula (50) takes the following form:  

( ) ( ) ⎥⎦⎤⎢⎣
⎡ −−+=

nn
nF 2121

22
1)(2     (52) 

Notice that for the first time this formula was derived by the English mathematician John Pell (1610-
1685). 
 For the case m=3 and m= 2  the formula (51) takes the following forms, respectively: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=

nn

nF
2

133
2

133
13
1)(3    (53) 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=

nn

nF
2

62
2

62
6

1)(2    (54) 

 Thus, the Egyptian mathematician Midhat J. Gazale has derived recently the unique 
mathematical formula (51), which includes as partial cases Binet formula for Fibonacci numbers (12) 
for the case m=1 and  Pell formula (52) for the case m=2. However, this formula generates an infinite 
number of the generalized Fibonacci numbers of the order m because m is positive real number. Due 
uniqueness of the formula (51) we will name this formula Gazale formula for the generalized 
Fibonacci numbers of the order m or simply Gazale formula.   
 
3. The generalized Fibonacci and Lucas numbers of the order m 
 

The generalized Fibonacci numbers of the order m 
 

 Let us prove that Gazale formulas (51)-(54) really expresses all generalized Fibonacci numbers 
of the order m given by the recursive formula (20) at the seeds (21). In fact, for the case n=0 it follows 
directly from the formula (51) that Fm(0)=0. For the case n=1 we can write the formula (51) as follows: 

1
2
4

2
4

4
1)1(

22

2
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−
−

++

+
=

mmmm
m

Fm . 

This means that the formula (51) corresponds to the seeds (21).  
 Suppose that the formula (49) is valid for a given n (the inductive hypothesis) and prove that 
this formula is valid for the case n+1, that is,  

( )1
2

1
124

1)1( ++ −
+

=+ nn
m xx

m
nF     (55) 

Using the identities (24) and (25) we can represent the formula (55) as follows: 
 



 10

( ) ( ) )1()(
4

1
4

)1( 1
2

1
12212

−+=−
+

+−
+

=+ −− nFnmFxx
m

xx
m

mnF mm
nnnn

m  (56) 

 Thus, the formula (56), in fact, sets the generalized Fibonacci numbers of the order m given by 
the recursive relation (20), (21).  
 Notice that the formula (51) sets all generalized Fibonacci numbers Fm(n) in the range n=0, ±1, 
±2, ±3, … . Let us find some surprising properties of the generalized Fibonacci numbers of the order m. 
First of all we can compare the generalized Fibonacci numbers Fm(n) and Fm(-n). We can write the 
formula (51) as follows: 

24
)1()(
m

nF
n

m
nn

m
m

+

Φ−−Φ
=

−

     (57) 

Represent now the formula (57) for the negative values of n, that is,  

24
)1()(

m
nF

n
m

nn
m

m
+

Φ−−Φ
=−

−−

     (58) 

Comparing the expression (57) and (58) for the even (n=2k) and odd (n=2k+1) values of n, we can 
conclude that 

Fm(2k) = -Fm(-2k) and Fm(2k+1) = Fm(-2k-1).   (59) 
This means that the sequences of the generalized Fibonacci numbers of the order m in the range n=0, 
±1, ±2, ±3, …  is a symmetric sequence relative to the generalized Fibonacci number Fm(0) = 0 
excepting that the generalized Fibonacci numbers Fm(2k) and Fm(-2k) are opposite by sign.  
 In Table 2 we can see the generalized Fibonacci numbers with the orders m=1, 2, 3, 4  
 

Table 2. The generalized Fibonacci sequences with the orders m=1, 2, 3, 4 
m Φm -5 -4 -3 -2 -1 0 1 2 3 4 5 
1 

2
51+  

5 -3 2 -1 1 0 1 1 2 3 5 

2 1+ 2  29 -12 5 -2 1 0 1 2 5 12 29 
3 

2
133+  

109 -33 10 -3 1 0 1 3 10 33 109 

4 52 +  305 -72 17 -4 1 0 1 4 17 72 305 
Notice that for the case m=2 the Gazele formula (57) generates a numerical sequence known as Pell 
numbers.  
 Let us find the fundamental formula, which connects the three adjacent generalized Fibonacci 
numbers with the order m. For the case m=1 this formula is known as Cassini formula. We can 
represent this formula for the classical Fibonacci numbers F1(n) as follows: 

1
11

2
1 )1()1()1()( +−=+−− nnFnFnF     (60) 

It is easy to prove the following general identity for the generalized Fibonacci numbers of the order m: 
12 )1()1()1()( +−=+−− n

mmm nFnFnF     (61) 
For example, for the case m=2 the Fibonacci numbers F2(-5)=29, F2(-4)=-12 and F2(-3)=5 are 
connected by the following correlation: (-12)2 - 29×5= -1, and for the case m=3 the Fibonacci numbers  
F3(4)=33, F3(3)=10 and F3(3)=3 are connected by the following correlation: (10)2 - 33×3 = 1. 

 
The generalized Lucas numbers of the order m 

 
 Consider once again the formula (44) given the generalized Fibonacci numbers of the order m. 
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By analogy to the classical Lucas numbers we can consider the formula  
nn

m xxnL 21)( +=      (62) 
It is clear that for the case m=1 this formula sets the classical Lucas numbers (6).  We will assume that 
the formula (62) sets the generalized Lucas numbers of the order m. For a given m we can find some 
peculiarities of the generalized Lucas numbers of the order m. First of all we can calculate the seeds of 
the generalized Lucas numbers of the order m. In fact, for the case n=0 and n=1 we have respectively:  

211)0( 0
2

0
1 =+=+= xxLm ;     (63) 

mxxLm =+= 1
2

1
1)1(       (64) 

Using the identities (29) and (30) we can represent the formula (62) as follows: 
( ) ( )2

2
2

1
1

2
1

1
2

2
2

1
2

2
1

121)( −−−−−−−− +++=+++=+= nnnnnnnnnn
m xxxxmxmxxmxxxnL  (65) 

Taking into consideration the definition (62) we can write (65) in the form of the following recursive 
relation:  

)2()1()( −+−= nLnmLnL mmm     (66) 
 It is clear that the recursive relation (66) at the seeds (63), (64) sets the generalized Lucas 
numbers of the order m.   
 If we substitute in the formula (62) instead x1 and x2 their expressions through the generalized 

golden ratio of the order m  x1 = Φm and 
m

x
Φ

−=
1

2  we can represent the formula (62) as follows:  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ
−

+Φ=
n

m

n
mm nL 1)(     (67) 

Although this formula is absent in the book [9] we will name this important formula Gazale formula 
for the generalized Lucas numbers of the order m.  
 We can rewrite the formula (67) as follows: 

n
m

nn
mm nL −Φ−+Φ= )1()(      (68) 

Represent now the formula (68) for the negative values of n, that is,  
n
m

nn
mm nL Φ−+Φ=− −− )1()(      (69) 

 Comparing the expression (68) and (69) for the even (n=2k) and odd (n=2k+1) values of n, we 
can conclude that 

Lm(2k) = Lm(-2k) and Lm(2k+1) = - Fm(-2k-1).   (70) 
This means that the sequences of the generalized Lucas numbers of the order m in the range n=0, ±1, 
±2, ±3, …  is a symmetrical sequence relative to the generalized Lucas number Lm(0) = 2 excepting that 
the generalized Lucas numbers Lm(2k+1) and Lm(-2k-1) are opposite by sign.  
 In Table 3 we can see the generalized Lucas numbers with the orders m=1, 2, 3, 4.  
 

Table 3. The generalized Lucas sequences with the orders m=1, 2, 3, 4 
m Φm -5 -4 -3 -2 -1 0 1 2 3 4 5 
1 

2
51+  

-11 7 -4 3 -1 2 1 3 4 7 11 

2 1+ 2  -82 34 -14 6 -2 2 2 6 14 34 82 
3 

2
133+  

-393 119 -36 11 -3 2 3 11 36 119 393 

4 52 +  -1364 322 -76 18 -4 2 4 18 76 322 1364 
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Notice that for the case m=2 the Gazele formula (69) generates a numerical sequence known as Pell-
Lucas numbers.  
 
4. A new class of the “golden” hyperbolic functions 
 

A definition of the hyperbolic Fibonacci and Lucas functions of the order m 
 
 Stakhov and Rozin introduced in [14] a new class of the hyperbolic functions, the symmetric 
hyperbolic Fibonacci and Lucas functions, basing on an analogy between Binet formulas (12), (13) and 
the classical hyperbolic functions. We can use this approach to introduce the hyperbolic Fibonacci and 
Lucas functions of the order m basing on an analogy between Gazele formulas given by (57) and (68) 
and the classical hyperbolic functions.  

Hyperbolic Fibonacci sine of the order m 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝
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⎜
⎜
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⎛ ++

+
=

+

Φ−Φ
=
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−

xx
x

m
x
m

m
mmmm

mm
xsF

2
4

2
4

4
1

4
)(

22

22
  (71) 

Hyperbolic Fibonacci cosine of the order m 

⎥
⎥

⎦

⎤
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⎢

⎣

⎡

⎟
⎟
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⎞
⎜
⎜
⎝
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−
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xx
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x
m

m
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mm
xcF

2
4

2
4

4
1

4
)(

22

22
  (72) 

Hyperbolic Lucas sine of the order m 
xx

x
m

x
mm

mmmmxsL

−

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +++
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
=Φ−Φ=

2
44

2
4)(

22

  (73) 

Hyperbolic Lucas cosine of the order m 
xx

x
m

x
mm

mmmmxcL

−

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ +++
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
=Φ+Φ=

2
44

2
4)(

22

  (74) 

The generalized Fibonacci and Lucas numbers of the order m are determined identically 
through the hyperbolic Fibonacci and Lucas functions of the order m as follows: 

12
2

),(
),(

)(
+=

=

⎩
⎨
⎧

=
knfor
knfor

ncF
nsF

nF
m

m
m ; 

12
2

),(
),(

)(
+=

=

⎩
⎨
⎧

=
knfor
knfor

nsL
ncL

nL
m

m
m . (75) 

The graphs of the hyperbolic Fibonacci and Lucas functions of the order m are similar to the 
graphs of the classical hyperbolic functions. Here is necessity to notice that in the point x=0, the 

hyperbolic Fibonacci cosine cFm(x) (72) takes the value
24

2)0(
m

cFm
+

= , and the hyperbolic Lucas 

cosine cLm(x) (74) takes the value cLm(0) = 2. It is also important to emphasize that the generalized 
Fibonacci numbers Fm(n) with the even values of n = 0, ±2, ±4, ±6, … are “inscribed” into the graph of 
the hyperbolic Fibonacci sine sFm(x) in the discrete points x = 0, ±2, ±4, ±6, … and the generalized 
Fibonacci numbers Fm(n) with the odd values of n = ±1, ±3, ±5, … are “inscribed” into the hyperbolic 
Fibonacci cosine cFm(x) in the discrete points x = ±1, ±3, ±5 …. In the other hand, the generalized 
Lucas numbers Lm(n) with the even values of n are “inscribed" into the graph of the hyperbolic Lucas 
cosine cLm(x) in the discrete points x = 0, ±2, ±4, ±6 …, and the generalized Lucas numbers Lm(n) with 
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the odd values of n are “inscribed” into the graph of the hyperbolic Lucas sine sLm(x) in the discrete 
points x = ±1, ±3, ±5 ….  

Also we can introduce the notions of the hyperbolic Fibonacci and Lucas tangents and 
cotangents of the order m.  

Hyperbolic Fibonacci tangent of the order m 

x
m

x
m

x
m

x
m

m

m
m xcF

xsFxtF −

−

Φ+Φ
Φ−Φ

==
)(
)()(     (76) 

Hyperbolic Fibonacci cotangent of the order m 

x
m

x
m

x
m

x
m

m

m
m xsF

xcFxctF −

−

Φ−Φ
Φ+Φ

==
)(
)()(     (77) 

Hyperbolic Lucas tangent of the order m 

x
m

x
m

x
m

x
m

m

m
m xcL

xsLxtL −

−

Φ+Φ
Φ−Φ

==
)(
)()(      (78) 

Hyperbolic Lucas cotangent of the order m 

x
m

x
m

x
m

x
m

m

m
m xsL

xcLxctL −

−

Φ−Φ
Φ+Φ

==
)(
)()(     (79) 

 By analogy we can introduce other hyperbolic Fibonacci and Lucas functions of the order m, in 
particular, secant and cosecant and so on.   

Properties of the hyperbolic Fibonacci and Lucas functions of the order m 

It easy to prove that the function (71) is an odd function because 

)(
44

)(
22

xsF
mm

xsF m

x
m

x
m

x
m

x
m

m −=
+

Φ−Φ
−=

+

Φ−Φ
=−

−−

   (80) 

On the other hand,  

)(
44

)(
22

xcF
mm

xcF m

x
m

x
m

x
m

x
m

m =
+

Φ+Φ
−=

+

Φ+Φ
=−

−−

   (81) 

that is, the hyperbolic Fibonacci cosine (72) is an even function.  

 By analogy we can prove that the hyperbolic Lucas sine of the order m (73) is an odd function 
and the hyperbolic Lucas cosine of the order m (74) is an even function.  

 Making the pair-wise comparison of the functions (76) and (78), (77) and (79) we can conclude 
that the functions of the hyperbolic Fibonacci and Lucas tangents and cotangents of the order m are 
coincident, that is, we have: 

tFm (x) = tLm (x) and  ctFm (x) = ctLm(x).   (82) 

 It is easy to prove that the functions (76), (77) are the odd functions because 

)()( xtFxtF mx
m

x
m

x
m

x
m

m −=
Φ+Φ
Φ−Φ

=− −

−
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)()( xctFxctF mx
m

x
m

x
m

x
m

m −=
Φ−Φ
Φ+Φ

=− −

−

 

Taking into consideration (82) we can write: 

)()( xtLxtL mm −=−  

)()( xctLxctL mm −=−  

that is, the functions (78), (79) are the odd functions too.  

 Thus, we have introduced above very interesting class of the hyperbolic functions, which are a 
wide generalization of the symmetric hyperbolic Fibonacci and Lucas functions (16), (17), which are a 
partial case of the above hyperbolic functions given by (71)-(74) for the case m=1. Let us consider the 
analytical expressions of the hyperbolic Fibonacci and Lucas functions (71)-(74) for the different 
values of the order m.  

Hyperbolic Fibonacci and Lucas functions of the order m=1 
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Hyperbolic Fibonacci and Lucas functions of the order m=2 
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( ) ( ) xxxxxsL
−− +−+=Φ−Φ= 2121)( 222    (89) 

( ) ( ) xxxxxcL
−− +++=Φ+Φ= 2121)( 222    (90) 

Hyperbolic Fibonacci and Lucas functions of the order m=3 
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 Notice that a list of these functions can be continued ad infinitum.  
  It is easy to see that the functions (71)-(74) are connected by very simple correlation: 

24
)()(

m
xsLxsF m

m
+

= ;    
24
)()(

m
xcLxcF m

m
+

= .   (95) 

This means that the hyperbolic Lucas functions of the order m (73), (74) coincide with the hyperbolic 

Fibonacci functions of the order (71), (72) to within of the constant coefficient
21

1
m+

. Taking into 

consideration this fact we will consider in further only the hyperbolic Fibonacci functions of the order 
m. 
 We can prove a number of the important theorem for the hyperbolic Fibonacci and Lucas 
functions of the order m.  

 The hyperbolic Fibonacci and Lucas functions of the order m possess the recursive properties 
similar to the generalized Fibonacci and Lucas numbers of the order m given by the recursive relations 
(20) and (66). On the other hand, they possess all hyperbolic properties similar to the properties of the 
classical hyperbolic functions. Prove the recursive and hyperbolic properties of the hyperbolic 
Fibonacci and Lucas functions of the order m. 

 

Theorem 1.  The following correlations that are analogous to the recurrent relation for the 
generalized Fibonacci numbers Fm(n+2) = mFm(n+1) + Fm(n) are valid for the hyperbolic Fibonacci 
functions of the order m: 

sFm (x+2) = mcFm (x+1) + sFm (x)    (96)  

    сFm(x+2) = msFm(x+1) + cFm(x) .    (97) 

Proof: 

mcFm(x+1) + sFm(x) = 
2
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4 m
m
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x
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+
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 (98) 

Because 21 mmm Φ=+Φ  and 211 −− Φ=Φ− mm we can represent (98) as follows: 

mcFm(x+1) + sFm(x) = )2(
4 2

22

+=
+

Φ−Φ −−+

xsF
m

m

x
m

x
m  

that proves the identity (96). 

 By analogy we can prove the identity (97). 

Theorem 2 (a generalization of Cassini formula). The following correlations that are similar 
to the Cassini formula 12 )1()1()1()( +−=+−− n

mmm nFnFnF  are valid for the hyperbolic Fibonacci 
functions of the order m: 
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[sFs(x)]2 - cFs(x+1) сFs(x-1) = -1    (99)  

 [cFs(x)]2 - sFs(x+1) sFs(x-1) = 1.    (100) 

Proof: 

[sFm(x)]2 - cFm(x+1) сFm(x-1) =
2
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  (101) 

Using the formula (68) for the case n=2 we can write: 
22)2( −Φ+Φ= mmmL      (102) 

Using the recursive formula (66) and the seeds (63), (64) we can represent the generalized Lucas 
number Lm(2) as follows: 
 

22)0()1()2( 2 +=+×=+= mmmLmLL mmm    (103) 
Taking into consideration (103) we can conclude from (101) that the identity (99) is valid.  
 By analogy we can prove the identity (100).  

Theorem 3.   The following identity similar to the identity for the classical hyperbolic functions 
[ch(x)]2 – [sh(x)]2 = 1 is valid for the hyperbolic Fibonacci functions of the order m: 

[cFm(x)]2 -  [sFm(x)]2 = 24
4
m+

 .    (104) 

Proof: 

[cFm(x)]2 -  [sFm(x)]2 =
2

24 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

Φ+Φ −

m

x
m

x
m - 

2

24 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

Φ−Φ −

m

x
m

x
m =  

= 22

2222

4
4

4
22

mm

x
m

x
m

x
m

x
m

+
=

+
Φ−+Φ−Φ++Φ −−

 

5
4

5
22

55

2222
22

=
−+−++

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=

−−− ττττττττ xxxxxx xx
 

 By analogy we can prove the following theorem for the hyperbolic Lucas functions of the order 
m.  

Theorem 4.  The following identity similar to the identity for the classical hyperbolic functions 
[ch(x)]2 – [sh(x)]2 = 1 is valid for the hyperbolic Lucas functions of the order m: 
 

[cLs(x)]2 - [sLs(x)]2 = 4    (105) 
 Theorem is proved by analogy to Theorem 3. 

Theorem 5. The following identity similar to the identity for the classical hyperbolic functions 
ch(x+y) = ch(x)ch(y) + sh(x)sh(y) is valid for the hyperbolic Fibonacci functions of the order m: 

24
2

m+
cFm(x+y) = cFm(x)cFm(y) + sFm(x)sFm(y) .   (106) 

Proof: 
cFm(x)cFs(y) + sFm(x)sFm(y) =  

= 
24 m

x
m

x
m

+

Φ+Φ −

×
24 m

y
m

y
m

+

Φ+Φ −

+
24 m

x
m

x
m

+

Φ−Φ −

×
24 m

y
m

y
m

+

Φ−Φ −

= 
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= 24 m

yx
m

yx
m

yx
m

yx
m

yx
m

yx
m

yx
m

yx
m

+
Φ+Φ−Φ−Φ+Φ+Φ+Φ+Φ +−+−−+−−+−−+

= 

= ( ) )(
4

2
44

2
222

yxcF
mmm

m

yx
m

yx
m +

+
=

+×+

Φ+Φ −−+

 

Theorem 6. The following identity similar to the identity for the classical hyperbolic functions 
ch(x-y)=ch(x)ch(y) - sh(x)sh(y) is valid for the hyperbolic Fibonacci functions of the order m: 

24
2

m+
cFm(x-y) = cFm(x)cFm(y) – sFm(x)sFm(y) .   (107) 

 Theorem is proved by analogy to Theorem 5. 
By analogy we can prove the following theorems for the hyperbolic Fibonacci and Lucas 

functions of the order m.  
Theorem 7. The following identities similar to the identity for the classical hyperbolic 

functions ch(2x) = [ch(x)]2 + [sh(x)]2 are valid for the hyperbolic Fibonacci and Lucas functions of the 
order m: 

5
2 cFm(2x) = [cFm(x)]2 + [sFm(x)]2    (108) 

2cLm(2x) = [cLm(x)]2 + [sLm(x)]2    (109) 
Theorem 8. The following identities similar to the identity for the classical hyperbolic 

functions sh(2x) = 2sh(x)ch(x) are valid for the hyperbolic Fibonacci and Lucas functions of the order 
m: 

24
1

m+
sFm(2x) = sFm(x)cFs(x)     (110) 

sLm(2x) = sLm(x)cLs(x)      (111) 
Theorem 9. The following formulas similar to Moivre’s formulas for the classical hyperbolic 

functions [ch(x)+ sh(x)]n = ch(nx) + sh(nx) are valid for the hyperbolic Fibonacci and Lucas functions 
of the order m:  

[cFm(x) ± sFm(x)]n  = 
1

24
2

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

n

m
[cFm(nx) ± sFm(nx)]   (112) 

[cLm(x) ± sLm(x)]n  = 2n-1[cFm(nx) ± sFm(nx)]    (113) 

Thus, our investigations led us to the discovery of a unique class of the hyperbolic functions 
based on the Gazale formulas (57), (68).  Remind that during many centuries the science, in particular, 
mathematics and theoretical physics, used widely the classical hyperbolic functions with the base e. 
These functions were used by Lobachevsky in his non-Euclidean geometry and by Minkovsky in his 
geometric interpretation of Einstein’s theory of relativity. Stakhov, Tkachenko and Rozin’s works [13, 
14] violated a monopoly of the classical hyperbolic functions in contemporary mathematics and 
theoretical physics. Stakhov, Tkachenko and Rozin proved that the geometry of the Living Nature (in 
particular, botanic phenomenon of phyllotaxis) can be modelled by the hyperbolic Fibonacci and Lucas 

functions with the base  
2

51
1

+
=Φ  (the golden ratio). It is clear that the above hyperbolic Fibonacci 

and Lucas functions of the order m based on the Gazale formulas extend indefinitely a number of new 
hyperbolic models of Nature. It is difficult to imagine, that the number of new hyperbolic functions 
given by formulas (71)-(74) is so much, how many exists real numbers! And all of them possess unique 
recursive and hyperbolic properties similar to the properties of the classical hyperbolic functions and 
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the hyperbolic Fibonacci and Lucas functions introduced in [13, 14]. This fact is of great importance 
for the development of the contemporary hyperbolic geometry and theoretical physics. 

5. Fibonacci Gm-matrices of the order m 
 

The “direct” Fibonacci Gm-matrices 
 

 The prominent American mathematician Verner Hoggatt, the founder of the Fibonacci 
Association, developed in his book [3] a theory of the Fibonacci Q-matrix (14), which is a generating 
matrix for the classical Fibonacci numbers (3). By analogy to (14) we can introduce the Gm-matrix of 
the order m being a generating matrix for the generalized Fibonacci numbers of the order m given by 
the recursive relation (20) at the seeds (21).  

The Gm-matrix of the order m 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

01
1m

Gm      (114) 

Notice that the determinant of the Gm-matrix (114) is equal: 
Det Gm = m×0 - 1×1 = -1.    (115) 

 The following theorem sets a connection of the Gm-matrix (114) with the generalized Fibonacci 
numbers of the order m given by (20), (21) .  

Theorem 9. For a given integer n (n=0, ±1, ±2, ±3, …) the nth power of the Gm-matrix of the 
order m is given by  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
+

= )1()(
)()1(

nmFnmF
nmFnmFn

mG    (116) 

 

where Fm(n-1) , Fm(n) , Fm(n+1)  are the generalized Fibonacci numbers of the order m. 
 Proof. We will use mathematical induction. Clearly, for n = 1, 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= )0()1(

)1()2(1
mFmF
mFmF

mG  .    (117) 

Using the seeds (21) and the recursive relation (20) we can write: 

Fm(0) = 0, Fm(1) = 1, Fm(2) = m Fm(1) + Fm(0) = m.   (118) 

It follows from (117) and (118) that  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

01

11 m
mG  .    (119) 

The base of the induction is proved.  

 Suppose that for a given integer k our inductive hypothesis is the following: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

+
= 1

1

k
mFk

mF

k
mFk

mFk
mG  



 19

Then we can write: 

m
k
m

k
m GGG ×=+1 = 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
×

−

+

01
1

)1()(

)()1( m

kmFkmF

kmFkmF  = 

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

+++
)()1()(

)1()()1(
kFkFkmF

kFkFkmF

mmm

mmm  = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

++
)()1(

)1()2(
kFkF

kFkF

mm

mm . 

 Theorem is proved. 
 The next theorem gives a formula for the determinant of the matrix (116). 

Theorem 10. For a given integer n we have:  
Det n

mG = (-1)n.    (120) 
Proof. Using general properties of the square matrices [] we can write 

Det n
mG = (Det Gm)n    (121) 

Taking into consideration (115) we can write the expression (121) as follows: 
Det n

mG =  (Det Gm)n = (-1)n. 
Theorem is proved.  
Theorem 11.  

Det n
mG = Fm(n+1)×Fm(n-1) - )(2 nFm = (-1)n.   (122) 

 The identity (122) follows directly from the matrix (116) and Theorem 10. 

 Remind that the identity (122) is one of the most important identities for the generalized 
Fibonacci numbers of the order m. It is clear that the identity (122) is a generalization of the famous 
Cassini formula.  

 Theorem 12.  
21 −− += n

m
n
m

n
m GmGG      (123) 

 Proof. Using the recursive relation Fm(n+2) = mFm(n+1) + Fm(n) we can represent the matrix 
(116) in the form: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−+−
−+−−+

=
)3()2()2()1(
)2()1()1()(

nFnmFnFnmF
nFnmFnFnmF

G
mmmm

mmmmn
m = 

= 21

)3()2(
)2()1(

)2()1(
)1()( −− +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−
−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
− n

m
n
m

mm

mm

mm

mm GmG
nFnF
nFnF

nFnF
nFnF

m  

 Theorem is proved.  

 Also we can represent the expression (116) in the following form: 
12 −− −= n

m
n
m

n
m mGGG      (124) 

 Basing on the recursive relations (123) and (124) we can construct the sequences of the Gm-
matrices (116) for the different m. Notice that for the case m=1 the matrices nG1 coincide with the 
matrices Qn given by (15).  
 Consider now the case m=2. Remind that for this case a sequence of the generalized Fibonacci 
numbers F2(n) of the order m=2 looks as is shown in Table 4.  
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Table 4. A sequence of the Fibonacci numbers F2(n) 

n -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 
m=2 169 -70 29 -12 5 -2 1 0 1 2 5 12 29 70 169
 Construct now a sequence of the matrices nG2 . For the case n=0 we will define the matrix 0

mG  
as follows: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

10

010
mG      (125) 

Using the recursive relation (123) and taking into consideration the seeds (125) and (119) we can 
construct the matrices 2

2G , 3
2G , 4

2G  and so on as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

12
25

10
01

01
12

22
2G     (126) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

25
512

01
12

12
25

23
2G     (127) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

512
1229

12
25

25
512

24
2G    (128) 

Using the recursive relation (124) and taking into consideration the seeds (125) and (119) we can 
construct the matrices 1

2
−G , 2

2
−G , 3

2
−G  and so on as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

21
10

10
01

2
01
121

2G     (129) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

52
21

21
10

2
10
012

2G    (130) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=−

125
52

52
21

2
21

103
2G   (131) 

 A sequence of the matrices nG2 is represented in Table 5 

Table 5. A sequence of the matrices nG2  
n 0 1 2 3 4 5 

nG2  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
12

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
12
25

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
25
512

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
512

1229
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1229
2970

 

nG−
2  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 21
10

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
52
21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
125
52

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
2912
125

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
7029

2912

 
 Consider the case m=3. Remind that for this case a sequence of the generalized Fibonacci 
numbers F3(n) of the order m=3 looks as is shown in Table 6.  
 

Table 6. A sequence of the Fibonacci numbers F3(n) 
n -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

m=3 -337 109 -33 10 -3 1 0 1 3 10 33 109 360 
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Using the seeds (125) and (118) and the recursive formulas (123) and (124) for the case m=3 
we can construct the matrices nG3 (see Table 7).  

Table 7. A sequence of the matrices nG3  
n 0 1 2 3 4 5 

nG3  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
01
13

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
13
310

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
310

1033
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1033
33109

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
33109

109360
 

nG−
3  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
10
01

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 31
10

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
103

31
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
3310

103
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
10933

3310
 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
360109

10933

 
It is easy to verify that all square matrices nG2 of Table 5 and the matrices nG3 of Table 7 posses 

one surprising property: all their determinants are equal +1 (for the even powers n) or -1 (for the odd 

powers n). In fact, the determinant of the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

512
12294

2G is equal 29×5 - 12×12 = 1 and the 

determinant of the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=−

360109
109335

3G  is equal (-33)×(-360) - 109×109 = 11880 -11881 = -1. 

 Consider now a general case of m. Remind that  the number m is a positive real number, for 
example, 2=m , m =π, m=e (a base of natural logarithms) and so on. Using the recursive relation 
(123) and taking into consideration the seeds (125) and (119) we can construct the matrices 2

mG , 3
mG , 

4
mG  and so on as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

1
1

10
01

01
1 2

2

m
mmm

mGm    (132) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=

mm
mmmm

m
mm

mGm 1
12

01
1

1
1

2

232
3   (133) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

++
++

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
++

=
12

23
1

1
1

12
23

3242

2

23
4

mmm
mmmm

m
mm

mm
mmm

mGm   (134) 

Using the recursive relation (124) and taking into consideration the seeds (125) and (119) we can 
construct the matrices 1−

mG , 2−
mG , 3−

mG  and so on as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

m
m

m
Gm 1

10
10
01

01
11    (135) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−
=−

1
1

2
2

mm
m

Gm      (136) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−−+
+−

=−

mmm
mm

Gm 21
1

32

2
3     (137)  

Inverse matrices n
mG−  

 Consider once again Table 5 and Table 7. They set the “direct” and “inverse” Gm-matrices. 
Comparing the “direct” ( n

mG ) with the “inverse ( n
mG− ) Gm-matrices it is easy to find a very simple 

method to get the “inverse” matrix n
mG−  from its “direct” matrix n

mG .  
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In fact, if the power n of the “direct” matrix n
mG  given by (116) is even (n=2k) then for 

obtaining its inverse matrix n
mG−  it is necessary to interchange the places of the diagonal elements 

Fm(n+1) и Fm(n-1) in (116) and to take the diagonal elements Fm(n) in (116) with the opposite sign. 
This means that for the case n=2k the “inverse” matrix k

mG 2−  has the following form:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−−
=−

)12()2(
)2()12(2

kFkF
kFkF

G
mm

mmk
m    (138) 

 To obtain the “inverse” matrix n
mG−  from the “direct” matrix n

mG  given by (116) for the case 
n=2k+1 it is necessary to interchange the places of the diagonal elements Fm(n+1) и Fm(n-1) and to 
take them with the opposite sign, that is:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−−
=−−

)12()2(
)2()12(12

kFkF
kFkF

G
mm

mmk
m    (139) 

One more way to obtain the matrices n
mG  follows directly from the expression (116). With this 

aim we can represent two Fibonacci series F2(n+1) и F2(n) shifted one relative to another on the one 
number (Table 8). 

 
Table 8. The shifted Fibonacci series F2(n+1) и F2(n) 

n 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 
F2(n+1) 169 70 29 12 5 2 1 0 1 -2 5 -12 29 

F2(n) 70 29 12 5 2 1 0 1 -2 5 -12 29 -70
 
If we select the number n=1 in the first row of Table 8 and then select the four Fibonacci 

numbers of the kind F2(n+1) and F2(n) in the lower two rows under the number 1 and to the right 
relative to it, then the totality of these Fibonacci numbers forms the Gm-matrix (119). The Gm-matrix is 
singled out by fat in Table 8. If we move in Table 8 to the left relative to the Gm-matrix, then we will 
get the matrices 2

2G , 3
2G , …, nG2 , …, respectively. If we move in Table 8 to the right relative to the 

Gm-matrix then we will get the matrices 0
2G , 1

2
−G , 2

2
−G , …, nG−

2 , respectively. Also the Fibonacci 
matrices 5

2G  and the “inverse” to it Fibonacci matrix 5
2
−G  are singled out by fat in Table 8. Notice that 

the matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

10
010

2G  is an identity matrix.   

This method of obtaining the n
mG -matrices can be used for the case of the arbitrary m.  

Thus, our investigations led us to the discovery of a unique class of the square Gm-matrices 
given by (114) and (116). They are a wide generalization of the Hoggatt-Fibonacci Q-matrices given by 
(14), (15).  

 
6. The “golden” Gm-matrices of the order m 
 
 Stakhov introduced in [26] the so-called “golden” matrices, which are a generalization of the 
Hoggatt-Fibonacci Q-matrix (15) for continuous domain. The above Stakhov-Fibonacci Gm-matrices of 
the order m given by (116) can be used for a wide generalization of Stakhov’s “golden” matrices (19). 
We can represent the matrix (116) in the form of the two matrices given for the even (n=2k) and odd 
(n=2k+1) values of n: 
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⎟
⎟
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⎝
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= )12()2(
)2()12(2

kmFkmF
kmFkmFk

mG     (140) 

⎟
⎟
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⎞

⎜
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⎝

⎛

+
++

=+
)2()12(

)12()22(12
kmFkmF

kmFkmFk
mG    (141) 

 And now we will return back again to the hyperbolic Fibonacci functions of the order m given 
by (71), (72).  As is shown above, the generalized Fibonacci numbers of the order m are determined 
identically through the hyperbolic Fibonacci and Lucas functions of the order m by the correlation (75). 
 Using (75) we can express the matrices (140) and (141) in the terms of the hyperbolic Fibonacci 
functions (71) and (72) as follows: 

 ⎟⎟
⎠

⎞
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⎛
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+
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)12()2(
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ksFkcFk
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mm
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⎛
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++
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)2()12(
)12()22(12

ksFkcF
kcFksFk

mG
mm

mm    (143) 

where k is a discrete variable, k=0, ±1, ±2, ±3, … .  
If we substitute the discrete variable k in the matrices (142), (143) by the continuous variable x, 

then we will come to the two unusual matrices that are the functions of the continuous variable x:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
=

)12()2(
)2()12(2

xcFxsF
xsFxcFx

mG
mm

mm     (144) 
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xcFxsFx
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mm
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 Notice that the “golden” matrices of the order m given by (144), (145) are a wide generalization 
of the “golden” matrices given by (19), which are partial cases of the matrices (144) and (145) for the 
case m=1, that is,  

xx QG 22
1 =  and 1212

1
++ = xx QG     (146) 

 
The inverse “golden” matrices of the order m 

 
 We can represent the inverse matrices (138), (139) in the terms of the hyperbolic Fibonacci 
functions of the order m given by (71), (72).  : 

⎟⎟
⎠
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)12()2(
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where k is a discrete variable, k=0, ±1, ±2, ±3, … .  
If we substitute now the discrete variable k in the matrices (147), (148) by the continuous 

variable x, then we will come to the following matrices that are the functions of the continuous variable 
x:  

⎟⎟
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⎞
⎜⎜
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)12()2(
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⎟⎟
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 Determinants of the “golden” matrices of the order m 

  
 Calculate now the determinants of the matrices (144) and (145): 

Det x
mG2 = cFm(2x+1)×cFm(2x-1) – [sFm(2x)]2   (151) 

Det 12 +x
mG  = sFm(2x+2)×sFm(2x) – [cFm(2x+1)]2   (152) 

 Compare now the expression (151), (152) with the identities (99), (100) for the hyperbolic 
Fibonacci functions of the order m. Because the identities (99), (100) are valid for all values of the 
variable x, in particular, for the value 2x, the following identities follow from this consideration:   

Det x
mG2  = 1     (153) 

Det 12 +x
mG = - 1    (154) 

By analogy we can prove the following identities for the “inverse” matrices (149), (150): 
Det x

mG 2−  = 1     (155) 
Det 12 −− x

mG = - 1    (156) 
 Notice that the unusual identities (152)-(156) are a generalization of the Cassini formula for 
continuous domain.  

Thus, our investigations, which are a continuation of our theory of the “golden” matrices [26],  
led us to the discovery of a unique class of the “golden” Gm-matrices given by (144) and (145). They 
are a wide generalization of Stakhov’s “golden” matrices given by (19).  
 
 

7. The improved method of the “golden” cryptography 

 Stakhov developed in [26] a new kind of cryptography based on the use of the “golden” 
matrices (19). The above “golden” direct and inverse matrices of the order m given by (144), (145), 
(149), (150) allow to improve the “golden” cryptographic method developed in [26]. 

 Let the initial message be a “digital signal”, which is any sequence of real numbers called 
readings: 

a1, a2, a3, a4, a5, a6, a7, a8, …    (157) 
There are many examples of the “digital signals” of the kind (157): digital telephony, digital TV, 

digital measurement systems and so on.  
 Choose the first four readings a1, a2, a3, a4 from (157) and form from them a square 2×2-matrix 
M: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

43

21

aa
aa

M     (158) 

Notice that the initial matrix M can be considered as a plaintext [24]. 
 Notice that there are 4! = 4×3×2×1 = 24 variants (permutations) to form the matrix (158) from 
the four readings a1, a2, a3, a4 . Designate the i-th permutation by Pi (i=1, 2, …, 24). The first step of 
cryptographic protection of the four readings a1, a2, a3, a4 is a choice of the permutation Pi .  
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Then we choose the direct “golden” matrices (144) or (145) as enciphering matrices and their 
inverse matrices (149), (150) as deciphering matrices.  
 Consider now the following encryption/decryption algorithms based on matrix multiplication 
(see Table 9).  

Table 9. Encryption/decryption algorithm based on the Gm-matrices 
 

Encryption  Decryption   
 M× x

mG2  = E1(x, m) E1(x,m)× x
mG 2−  = M 

 M× 12 +x
mG  = E2(x,m) E2(x,m)× 12 −− x

mG  = M 
Here M is the plaintext (158) that is formed according to the permutation Pi; E1(x, m), E2(x, m) are code 
matrices or cipher texts; x

mG2 , 12 +x
mG  are the enciphering matrices given by (144), (145); x

mG 2−  and 
12 −− x

mG  are the deciphering matrices given by (149), (150).  
 Notice that the encryption/decryption algorithm given by Table 9 is a partial case of the 
encryption/decryption algorithm developed in [26] because for the case m=1 the matrices xG2

1  and 
12

1
+xG  are reduced to the matrices Q2x  and Q2x+1, respectively.  

 From the point of view of cryptography the main advantage of the “golden” cryptographic 
method given by Table 9 is an appearance of new cryptographic key, the “gnomonic” number m, which 
is a positive real number. Thus, the code matrices E1(x, m), E2(x, m) are functions of the two continuous 
variables x and m, what can give new possibilities for cryptographic protection.  
 Let us prove that the encryption/decryption algorithm given by Table 9 provides the one-valued 
transformation of the plaintext M into the cipher text E and then the cipher text  E into the plaintext M. 
We will consider this transformation for the case when we choose the matrix (144) as enciphering 
matrix and the matrix (149) as deciphering matrix. For the given value of the cryptographic keys x and 
m the “golden” encryption, that is, the transformation of the plaintext M into the cipher texts  E1(x, m) 
can be represented as follows: 

M× x
mG2  = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

43

21

aa
aa

× ⎟⎟
⎠

⎞
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⎝

⎛
−

+
)12()2(

)2()12(
xcFxsF

xsFxcF

mm

mm = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2221

1211

ee
ee

=E(x, m)  (159) 

where  
e11 = a1cFm(2x+1) + a2sFm(2x)   (160) 
e12 = a1sFm(2x) + a2cFm(2x-1)    (161) 
e21 = a3cFm(2x+1) + a4sFm(2x)   (162) 
e22 = a3sFm(2x) + a4cFm(2x-1)    (163) 

 Consider the “golden” decryption for this case:  

E(x,m)× x
mG 2− = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2221

1211

ee
ee

× ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−−
)12()2(

)2()12(
xcFsxsFs

xsFsxcFs
= ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

2221

1211

dd
dd

= D  (164) 

where 
d11 = e11cFm(2x-1) – e12sFm(2x)   (165) 
d12 = - e11sFm(2x) + e12cFm(2x-1)   (166) 
d21 = e21cFm(2x-1) – e22sFm(2x)   (167) 
d22 = - e21sFm(2x) + e22cFm(2x-1)   (168) 

For the calculation of the matrix elements given by (165)-(168) we can use the expressions 
(160)-(163). Then we have: 

d11 = [a1cFm(2x+1) + a2sFm(2x)] cFm(2x-1) – [a1sFm(2x1) + a2cFm(2x-1)]sFm(2x) = 
= a1cFm(2x+1) cFm(2x-1) + a2sFm(2x) cFm(2x-1) - a1[sFm(2x)]2 – 

- a2cFm(2x-1) sFm(2x) =  a1{cFm(2x+1) cFm(2x-1) – [sFm(2x)]2}  (169) 
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Using the fundamental identities (99), (100) we can simplify the expression (169) as follows: 
d11 = a1.      (170) 

In the same manner after corresponding transformations we can write: 
d12 = a2     (171) 
d21 = a3     (172) 
d22 = a4     (173) 

Using (170)-(173) we can write the matrix (164) as follows:  

D = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2221

1211

dd
dd

= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

43

21

aa
aa

= M   (174) 

This means that a cryptographic method given by Table 9 provides the one-valid transformation of the 
initial plaintext M at the entrance of the coder into the same plaintext M at the exit of the decoder.  
 

 Determinants of the code matrices 
 

 Calculate now the determinant of the cipher texts, that is, the code matrices E1(x,m), E2(x,m): 
Det E1(x,m) = Det M×Det x

mG2      (175) 
Det E2(x,m) = Det M×Det 12 +x

mG      (176) 
If we use the identities (153), (154), we can write the expressions (175), (176) as follows:  

Det E1(x,m) = Det M      (177) 
Det E2(x,m) = - Det M     (178) 

This means that the determinants of the matrices E1(x,m) and E2(x,m) are defined identically by the 
determinant of the initial matrix M.   
 

Peculiarities of the “golden” cryptography based on the Gm-matrices  
 

 As we remembered above, the “golden” cryptographic method based on the Gm-matrices (Table 
9) has important distinction from Stakhov’s method developed in [26]. In Stakhov’s  method [26] we 
use the only kind of the hyperbolic functions, the symmetric hyperbolic Fibonacci functions given by 
(16), that is, the form of the hyperbolic functions remains without change and the cryptographic 
protection is provided by the continuous variable x, which is used as cryptographic key. For the case of 
the “golden” cryptographic method given by Table 9 we use an infinite number of the hyperbolic 
Fibonacci functions of the order m given by (71), (72). At that we use the two cryptographic keys, the 
continuous variable x and the “gnomonic number” m, which determines the form of the used hyperbolic 
functions (71), (72). This means that the realization of the encryption algorithm, which is reduced to 
the calculation of the elements of the code matrix (159), id reduced to the fulfillment of the following 
calculations: 
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e12 = a1
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e21 = a3
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e22 = a3
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 The realization of the decryption algorithm, which is reduced to the calculation of the elements 
of the code matrix (164), means the fulfillment of the following calculations: 
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d12 = - e11
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d21 = e21
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++

+

+−− 12
2

12
2

2 2
4

2
4

4
1

xx
mmmm

m
 + 

– e22
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++

+

− xx
mmmm

m

2
2

2
2

2 2
4

2
4

4
1   (185) 



 28

d22 = - e21
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8. Advantages of the new method of the “golden” cryptography 
 

Improvement of cryptographic protection 
 

 We can improve the cryptographic protection of the methods based on Table 9 if we use 
multiple encryption and decryption. This idea consists in the following. The first step of the encryption 
is to use the key 

K1={Pi , x1, m1}    (187)  
 The cryptographic key (187) includes any permutation Pi of the matrix (158) and some values 
x1 of the continuous variable x and the “gnomonic” number m1 taken in random manner. As a result of 
the encryption we can get the code matrix the code matrix E(Pi, x1, m1) given by (159). The second step 
of the encryption is to use the matrix E(Pi, x1, m1) as the initial matrices for the new encryption. With 
this aim we can use the second cryptographic keys 

K1={Pj, x2, m2}    (188)  
where Pj is the next permutation, x2 is the next value of x and m2 is the next value of m.. After the 
fulfillment of the “golden” encryption with the key (188) we can get a new code matrix E that is a 
function of the two permutation Pi and Pj , the two values x1 and x2 and the two values m1, m2 , that is,  

E = E (Pj , x1, m1;  Pj, x2, m2 )    (189) 
 In general case we can repeat this procedure k times, that is, the cryptographic key K is a totality 
of the k random permutations Pi , Pj, …, Ps , the k random values x1, x2, ...,  xk  and the k random values 
m1, m2, ...,  mk  that is,  

K={Pi , x1, m1; Pj, x2, m2;  ... ; Ps, xk , mk)   (189) 
  

 As the outcome of the multiple encryption, we can get the code matrix   
E = E (K). 

For the decryption we have to use the inverse cryptographic key K-1 that is an inverse form of the initial 
cryptographic key  (189), that is,  

K-1={ Ps, xk , mk ; Pr, xk-1 , mk-1; … ; Pj, x2, m2;  Pi , x1, m1)  (190) 
 

Transmission of the cryptographic keys 

 It is clear the “golden” cryptographic method relates to symmetric-key cryptography. As is well 
known, a problem of the key distribution is the main shortcoming of the symmetric-key cryptography. 
To eliminate this shortcoming, in the recent decades the so-called public-key or asymmetric 
cryptography was developed. In the asymmetric cryptosystems we use the two keys: public key and 
private or secret key. The encryption of the message before transmission is fulfilled by the use of the 
public key and the decryption of cipher text is fulfilled by the use of the secret key. However, the 
asymmetric cryptography has two shortcomings:  
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(1) The asymmetric cryptography uses very complicated encryption and decryption algorithms. 
This means that sometimes this kind of cryptography cannot be used for the protection of 
digital signals in real scale of time. 

(2) Because the encryption and decryption algorithms are very complicated and demands 
complicated processors for their realization, this fact puts forward a problem to guarantee that 
the encryption and decryption algorithms would be fulfilled without errors (a problem of 
reliable computations). 

 To design fast and reliable cryptographic method we can join the “golden” cryptography with 
the asymmetric cryptography. We will use the existing asymmetric cryptosystems for the distribution 
of the key (189). Such approach has the following advantages:  

(1) Because simplicity of the “golden” encryption/decryption algorithms, we can use the “golden” 
cryptographic system given by Table 9 for the fast transmission of the digital signals. 

(2) We can use the unique mathematical property of the “golden” cryptography given by (177), 
(178) to check the encryption and decryption results. 

This means that using the “golden” cryptography method given in Table 9 we can design fast, 
simple for technical realization and reliable cryptosystems.  
 Notice that for every session of transmission we can change the cryptographic key (189). This 
means that the analysis of the previous transmissions cannot be used for uncovering the current 
cryptographic key (189). We can change the cryptographic key (189) using a generator of random 
numbers. This means that we have many different ways to improve the cryptographic protection.  
 
9. Conclusion 

 In author’s opinion the present paper is of a great importance for the development of the 
contemporary theory of Fibonacci numbers and the Golden Section [1-10] and also for contemporary 
mathematics and computer science. In conclusion the author would like to discuss the mathematical 
results of this paper from this general point of view: 

1. Gazale formulas. Since ancient time it is usual to mathematics to name new 
mathematical discoveries and theories by the name of the outstanding mathematicians 
who made these discoveries and theories (Pythagoras Theorem, Euclidean geometry, 
Conic sections by Apollonius, Diophantine equations, Lobachevsky’s geometry, Euler’s 
formulas,  Moivre’s formulas and so on). In the Fibonacci numbers theory [2, 3, 7] there 
are a number of the fundamental mathematical results named in the honor of the 
outstanding scientists. Binet formulas and Cassini formulas are the most known 
examples of such formulas in the Fibonacci numbers theory. Considering the Gazale 
formulas (51), (68) from this point of view, we should note that these formulas have 
great importance for the development of the contemporary Fibonacci numbers theory 
and go far the framework of the Fibonacci numbers theory. They generate an infinite 
number of the generalized Fibonacci and Lucas numbers of the order m similar to the 
classical Fibonacci and Lucas numbers (3), (6), which are partial cases of the new 
numerical sequences for the case m=1. Gazale formulas belong to the outstanding 
mathematical results and are of great importance for number theory.   

2. Hyperbolic Fibonacci and Lucas functions of the order m are a wide generalization 
of the symmetric hyperbolic Fibonacci and Lucas functions introduced by Stakhov and 
Rozin in 2005 [14]. Remind that during many centuries the science, in particular, 
mathematics and theoretical physics, used widely the classical hyperbolic functions with 
the base e. These functions were used by Lobachevsky in his non-Euclidean geometry 
and by Minkovsky in his geometric interpretation of Einstein’s theory of relativity. 
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Stakhov, Tkachenko and Rozin’s works [13, 14] violated a monopoly of the classical 
hyperbolic functions in contemporary mathematics and theoretical physics. Stakhov, 
Tkachenko and Rozin proved that the geometry of the Living Nature (in particular, 
botanic phenomenon of phyllotaxis) can be modelled by the hyperbolic Fibonacci and 

Lucas functions with the base  
2

51
1

+
=Φ  (the golden ratio). It is clear that the above 

hyperbolic Fibonacci and Lucas functions of the order m based on the Gazale formulas 
extend indefinitely a number of new hyperbolic models of Nature. It is difficult to 
imagine, that the number of new hyperbolic functions given by formulas (71)-(74) is so 
much, how many exist real numbers! And all of them possess unique recursive and 
hyperbolic properties similar to the properties of the classical hyperbolic functions and 
the hyperbolic Fibonacci and Lucas functions introduced in [13, 14]. This fact is of great 
importance for the development of the contemporary hyperbolic geometry and 
theoretical physics. 

3. The “golden” matrices of the order m are a wide generalization of Stakhov’s  
“golden” matrices introduced in 2006 [26]. They are based on the hyperbolic Fibonacci 
and Lucas functions of the order m and are of great importance for matrix theory.    

4. A new cryptographic method based on the “golden” matrices of the order m is a 
wide generalization of Stakhov’s “golden” cryptographic method developed in 2006 
[26]. This new cryptographic method improves considerably possibilities of the 
cryptographic protection and can lead to the design of the fast, simple for technical 
realization and reliable cryptosystems.  

 Notice that this paper is natural corollary of the preceding author’s works in the “Golden 
Section” field [4-6, 11-28], first of all, the papers [13,14], in which Stakhov, Tkachenko and Rozin 
developed a new class of hyperbolic functions, and the papers [23, 25, 26], in which Stakhov  
developed a new class of the Fibonacci and “golden” matrices and a new kind of  coding theory and 
cryptography.    

 It is clear that the Gazale formulas [9], a new class of the hyperbolic Fibonacci and Lucas 
functions, a new class of the “golden” matrices and a new cryptographic method developed in the 
present paper are of the bright examples of the “global fibonaccization” of modern science, which finds 
its reflection in the works of Vera W. de Spinadel [8], Jay Kappraff [9], Midhat J. Gazale [10], Mauldin 
and Willams [29], El Nashie [30-36], Vladimirov [37, 38], Soroko [39], Bodnar [40], Petoukhov [41] 
and so on.  
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