Напечатать документ Послать нам письмо Сохранить документ Форумы сайта Вернуться к предыдущей
АКАДЕМИЯ ТРИНИТАРИЗМА На главную страницу
Институт Физики Вакуума - Публикации

Елисеев В.И.
Расчет квантовых переходов в атоме Водорода
методами Теории Функций Комплексного
Пространственного Переменного (ТФКПП)
Oб авторе
Введение
Уровни энергии атома это экспериментальный факт. Они фиксируются атомными спектрами, которые представлены спектрами термов. Термы характеризуются волновыми числами , которые представимы в виде разности двух термов . Экспериментальные спектры термов переводятся в энергию спектров, так что . Когда атом излучает или поглощает электромагнитное излучение, он совершает переход из одного состояния в другое.
.
Однако, что происходит в действительности в результате такого перехода до настоящего времени не ясно.
Квантовая механика объясняет свойства этих переходов введением набора квантовых чисел и исследует возможности изменения последних.
Однако то, что квантовые переходы характеризуют структурные изменения в состоянии электрона на орбите, остается неисследованным. Изменение главного квантового числа n, орбитального и азимутального квантового числа нельзя рассматривать как изменение полевого взаимодействия электрона с протоном в системе водорода.

КВАНТОВЫЕ ПЕРЕХОДЫ в комплексном числовом пространстве.
Полная энергия электрона на орбите (кинетическая и потенциальная ) должна быть равна
, (1)
где -радиус орбиты, e –единица заряда.
Единица заряда определяется в системе постоянных G, h, C. Радиус орбиты определяется из предлагаемых теорий. В связанной системе водород- протон массой
и электрон -теряют энергию на эту величину E.
В числовом комплексном поле электрон представим в виде
(2)
где условно обозначено :
(3)
Лептонный заряд электрона отождествлен с сингулярным направлением аргумента и изолированным туннелем сечения .
Электронный заряд отождествлен с сингулярным направлением аргумента и туннелем сечения .
Электрон имеет также электронно-лептонный заряд и туннель с двумя вложенными друг в друга изолированными направлениями.
Принципиально любая микрочастица может быть представлена соответствующей комбинацией зарядовых полей. В этом случае коэффициенты перед зарядами становятся весовыми, по которым и отличаются микрочастицы.
(4)
Однако для исследования электрона будем рассматривать весовые коэффициенты состояний.
Весовые коэффициенты определяют, какую часть энергии и массы частицы составляет электрическое, лептонное и электронно-лептонное поле. Весовые коэффициенты специально обозначены символами, характеризующими состояние электрона в атоме водорода.
Принципиально электрон обладает свойствами, которые проявляются в соответствующих одинаковых условиях. Система водород это лишь частный случай проявления этих свойств.
По показателям экспоненты можно сопоставить возможные переходы электрона из одного состояния в другое, например, из состояния 3d можно перейти в состояние f (по ji) , из состояния 2p имеем переход в состояние d (по ji) и в состояние s(по kj), из состояния s имеем переход в состояние p(по kj). Эти переходы соответствуют наиболее вероятностным переходам уровням энергии атома водорода.
Таким образом, уровни изменения энергии находятся в достаточно хорошем согласии с экспериментальными данными спектральных линий.
Весовые коэффициенты характеризуют долю энергии поля в общей энергии полей. Одновременно они характеризуют состояние микрочастицы (в данном случае электрона).
Квантовые переходы сопровождаются изменением структуры полей взаимодействия электрона с изменением размерности пространства, которым принадлежат подпространства полей взаимодействия. И, в конечном счете, квантовый переход это переход их одного измерения пространства в другое.
Из состояния 2p с двумя сингулярными направлениями , (то есть с двумя туннелями взаимодействия) осуществляется переход в состояние с одним сингулярным направлением с одним туннелем . Таким образом, эмпирические вероятностные переходы соответствуют этим квантовым переходам.
Эмпирические условия возможности переходов, таким образом, получили подтверждение. Квантовые переходы возможны только при изменении состояния поля взаимодействия. Это правило отбора, например и так далее согласно экспериментальным данным. Комбинации термов с переходом через одно состояние, например из состояния слабо выражены.
Математический аппарат комплексного пространства позволяет расширить описание полей взаимодействия для пространства любого числа измерений.
Кроме того, можно рассматривать также поля вида с тремя изолированными сингулярными направлениями. Необходимо напомнить, что взаимодействие микрочастиц происходит через сингулярные туннели (то есть излучение и поглощение электрона).
Таким образом, нет ограничений на появление новых характеристик взаимодействий (в том числе и под кодировкой торсионные).
Однако в дальнейшем ограничимся только коэффициентами состояний .

Уровни энергии водородного атома.
При образовании системы водородного атома полевая энергия с весомыми коэффициентами состояния преобразуется в обменную полевую энергию, которая идет по сингулярному направлению, общему для электрона и протона и общему эпсилон туннелю циклонного вихря. При этом величина этой обменной энергии определяет дефект атома электрона в системе, который и реализуется в пространстве как энергия ионизация водорода.
(5)
где - величина орбиты, соответствующая обменному полевому кванту,
энергия электрона в не связанном состоянии.
Формула является прямым аналогом " дефекта" метрики пространства с переходом от пространства с метрикой Евклида к пространству с метрикой Минковского.
(6)
Дефект метрики проявляется в системе атома водорода как потенциал ионизации. Координата времени соответствует обменному полевому кванту.
Полевая обменная масса со скоростью света в системе водорода идет по общему эпсилон туннелю для протона и электрона.
Система водорода одновременно находится в пространстве и подпространстве взаимодействия, так что величина является единственным для этих категорий и определяется через величину обменного кванта по известным формулам квантовой механики
(7)
В первом приближении формула 5 дает выражение
(8)
В координатах G, h, C элементарный заряд выражается как
(9)
Формулы 7, 8, 9 дают
(10)
Формула показывает, что постоянная тонкой структуры определяет какое количество энергии от электрона идет в системе водород в подпространство взаимодействия.
Подставив формулу 7 в выражение 8, получим выражение для первой орбиты Бора в атоме водорода
(11)
В точном соответствии с теоретической физикой Бора.
Формулу 5 можно рассмотреть с других позиций.
В левой части рассматриваем не полную энергию электрона в атоме, а потенциальную по закону Кулона. В этом случае имеем
(12)
Формулу исследуем на предельный случай:
Вводим условие равенства обменного кванта массе электрона, то есть вся энергия электрона переходит в пространство обменного кванта.
Формула и соответствует этому физическому условию, так как в этом случае имеем
потенциальная энергия взаимодействия равна энергии электрона. Откуда имеем классический радиус электрона
(13)
Формула 13 определяет радиус эпсилон туннеля в электроне, через который идет поток энергии равный энергии самого электрона. Однако для системы водород требуется только часть этой энергии равная . В пределах изменения этой части и заключен весь спектр водорода.
Величина обменного кванта и постоянная тонкой структуры позволяет увязать все три формулы 7, 11, 13.
Из соотношений 8, 10 имеем

Рис 1. Электронное нейтрино.

Рис 2. Структура электрона.

Электрон имеет два заряда и поэтому имеет два зарядовых подпространства. Лептонное
Заряд определен эпсилон туннелем с изолированным направлением По аналогии с формулами, определяющими размер электрона, лептон имеет радиус сферы и радиус эпсилон туннеля
Величину лептонного L заряда предстоит определить.
Лептон движется по циклонной кривой , которая замыкает пространство электрического заряда, и проходит по эпсилон туннелю этого пространства.
Радиус сферы электрического заряда равен -комптоновской длине волны электрона. Радиус туннеля электрона равен . Циклонная кривая электрона состоит из непрерывного лептонного вихря.
Позитрон имеет аналогичную пространственную структуру.
В протоне циклонная кривая состоит из структуры позитрона.
Современная квантовая механика базируется на декарто-векторном и тензорном математическом аппарате. Эти аппараты не являются числовыми и не описывают числовое поле. Этот грубейший недостаток непрерывно проявляется в исследованиях любых вопросов. Квантовые переходы описываются набором квантовых чисел (соответственно главное квантовое число, радиальное и орбитальное), которые описывают состояние электрона как точки с чисто механическими свойствами. Квантовые переходы рассматриваются как изменение этих чисел на одну, две единицы чисто абстрактно без всякого соответствия с реальной структурой протона и электрона. Подбор тригонометрических функций, обладающих таким свойством, не вскрывает физическую сущность квантовых переходов.
Теории Бора, Щредингера не раскрывают кодировки лептонного заряда. Заряд рассматривается как что-то декоративное, что не влияет на процессы квантовых переходов. Изменение квантовых чисел не связано с изменением структуры системы-водород. Классификация Физики микрочастиц кроме электрона и позитрона насчитывает целый ряд лептонов: электронное нейтрино, антинейтрино, ……
Физическая сущность Квантовых переходов заключена в изменении структуры полевого взаимодействия с переходом взаимодействия на другой уровень размерности.
В соответствии с формулой 5 изменение энергии связи электрона связано с изменением полевого обменного кванта . В предельном случае величина обменного кванта составляет , что соответствует энергии связи . Масса электрона Мэв, ,
Электронное нейтрино имеет массу эв, антинейтрино эв
Запишем расчетную формулу 5 в виде
(14)
где

Определим при каких K получаем основные состояния электрона 1S, 2s, 3s, 4s, 5s, 6s. Сведем расчет в таблицу

N-K
K
Eрасч
Eэксп
Состояние
266
0
13.56
13.56
7s
259
7
12.86
12.9
5s
256
10
12.56
12.6
4s
251
15
12.08
12.1
3s
230
36
10.14
10.15
2s
266
266
0
0
1s

Величина K показывает, сколько масс нейтрино с лептонным зарядом 14эв удерживает электрон в состояниях S.
В соответствии с формулой 14 имеем

Вычитая одну энергию из другой, получим в первом приближении
(15)
Формула связывает частоту спектральных термов, массу электронного нейтрино, массу электрона, общее количество нейтрино N, которому соответствует наибольшая энергия связи электрона с протоном, количество нейтрино в составе обменного кванта, которые отвечают уровням энергии.
Спектроскопические справочники позволяют уточнить минимальную массу нейтрино для любой спектральной серии. Кроме того формула позволяет производить расчeты химических реакций (но это в дальнейшем).
Формула 15 отвечает механизму взаимодействия электрона с протоном в системе водорода. Электрон выделяет в пространство взаимодействия часть своей энергетической массы, которая состоит из определенного количества электронных нейтрино. Каждый уровень определен конкретным количеством, изменение которого приводит к переходам. Переходы являются квантовыми, так как сопровождаются сменой характера взаимодействия.
Таким образом, излучение или поглощение энергии вызывается изменением в структуре электрона и структуре взаимодействия. При этом внутренняя энергия изменяется в Кэв, а реакция в виде излучения проявляется в Эв. На стационарных орбитах электрон излучает столько обменных квантов, сколько пропускает через себя протон.
Исследование системы спектров атома водорода в числовом комплексном пространстве еще раз убедительно показало, что структура материи есть система вложенных подпространств, характеризуемых своим уровнем энергии. Причем вложение идет как по вертикали с повышением уровня энергии, так и по горизонтали без изменения этого уровня. Причем переход к вертикальному вложению происходит при заполнении горизонтального уровня.
Это и есть квантовый переход и его сущность, которую не в состоянии осилить современная безструктурная теоретическая физика.
Спектральные серии атома водорода описываются обобщенной формулой , где , а m для каждой серии равно.
Выше было показано, что переход к новой серии есть переход к новому взаимодействию.
Это и есть квантовый скачок. Изменение в n не есть квантовый переход. Изменение в серии m квантового числа n не является квантовым переходом, оно не наблюдаемо и запрещено (как показано выше).
Однако все серии принадлежат одному уровню энергии в системе водорода. Изменение энергии в этом уровне оцениваются энергией обменного кванта между электроном и протоном в интервале Эв-Кэв. А проявляется это изменение на другом уровне в долях электрон вольт.
Такой характер вложения энергий прослеживается на любом структурном уровне.

Елисеев В.И. Расчет квантовых переходов в атоме Водорода методами Теории Функций Комплексного Пространственного Переменного (ТФКПП) // «Академия Тринитаризма», М., Эл № 77-6567, публ.11664, 24.11.2004

[Обсуждение на форуме «Институт Физики Вакуума»]

В начало документа

© Академия Тринитаризма
info@trinitas.ru