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Abstract

The Ricci and Cartan torsions are compared. Their common properties and distinctions
are revealed. It is shown that Ricci torsion determines curvature and torsion in Frenet's
equations and consequently the very torsion, instead of the Cartan one, can be connected
with spin properties of matter. The theorems showing that in �at and curved spaces it is
possible to present Frenet's curves as a �rst kind geodesic lines of space of absolute parallelism
are proved . The connection between �elds and forces of inertia and torsion of geometry of
absolute parallelism (Ricci torsion) is established.

On the basis of Frenet's equations the structure of radiation friction force in equations of
charge motion possessing a spin is investigated. It is shown, that there is a radiation force
connected with the charge spin, which is responsible for torsion component of electromagnetic
�eld. The theoretical evaluation of this force magnitude is given. It is concluded, that torsion
interactions are weaker than electromagnetic ones, but stronger than gravitational ones.

1 Frenet's equations

In the middle of the last century French mathematician F. Frenet has written famous
equations, describing motion of orientable point1 along arbitrary curve x = x(s), where s �
the length of an arc.

Frenet's equations are written for normalized on unit orthogonal vectors e1, e2 and e3 with
the beginning in a point M (�g.1). They are as follows [1]

de1

ds
= κ(s)e2 , (1)

de2

ds
= −κ(s)e1 + χ(s)e3 , (2)

de3

ds
= −χ(s)e2 , (3)

where κ(s) - curvature of the curve, χ(s) - torsion of the curve.
Frenet was the �rst who has shown that arbitrary curve is generally determined by two

parameters - curvature κ(s) and torsion χ(s).
Unit vector e1 is choused as tangent to the curve at point M.

dx

ds
= e1 ,

∣∣∣∣dxds
∣∣∣∣ = 1 (4)

1An orientable point is understood as triad, formed by three unit orthogonal vectors.



Unit vector e2 is directed along main normal and the binormal vector e3 is determined as
follows

e3 = [e1e2].

Di�erentiating Frenet's equations (1) and (2) on s and using orthogonality conditions of
the triad vectors, we shall get the equations

d2x

ds2
= κ(s)e2 , (5)

d3x

ds3
=
dκ(s)

ds
e2 − κ2(s)e1 + κ(s)χ(s)e3 , (6)

describing motion of the triad initial point (motion of point M).
During in�nitesimal displacement of point M along the curve the triad vectors simulta-

neously change their orientation in space. For description of the change it is convenient to
introduce angular coordinates ψ, ϕ, φ. Expressing, for example, the components of tangent
vector e1 through angular variables, we have

dx

ds
= cosϕ cosψ − sinϕ sinψ cosφ, (7)

dy

ds
= sinϕ cosψ + cosϕ sinψ cosφ, (8)

dz

ds
= sinψ sinφ. (9)

Figure 1: Trajectory of an orientable point

Di�erentiating these equations and excluding from them translational coordinates, we get
"rotational equations of motion" as follows



dϕ

ds
= χ

sinψ

sinφ
, (10)

dψ

ds
= κ− χ sinψ ctgφ, (11)

dφ

ds
= χ cosψ. (12)

2 Connection of κ(s) and χ(s) with Ricci torsion

Let us investigate the issue of geometry structure, in which Frene's curves are geodesic
lines.

Statement 1. Curvature κ and torsion χ are independent components of Ricci rotation
coe�cients.

Proof. Let's consider six-dimensional manifold of coordinates x1, x2, x3, ϕ1, ϕ2, ϕ3. It is
convenient to present it as a vector bundle2 with the base formed by translational coordinates
x1, x2, x3 (let it be Cartesian coordinates) and �bre, speci�ed at each point xa (a = 1, 2, 3) by
three orthonormalized Frenet's reference vectors

eA, A = 1, 2, 3, (13)

where A means number of the reference vector.
According to Euler's theorem, an in�nitesimal rotations around the three axes of reference

vector (13) is equivalent to one rotation with angle dχχχ around a de�nite axis passing through
the origin of the axis O. It is possible to de�ne the in�nitesimal rotation as

dχχχ = dχeχ,

where vector eχ is directed along instantaneous rotation axis of reference system. This direc-
tion is selected so that, if one looks from the end of the vector eχ e at a �xed point O, then
the rotation is made counter-clockwise (right-hand reference system).

An in�nitesimal rotation of Frenet's reference vectors eχ upon rotation dχχχ has the form

deA = [dχχχeA]. (14)

If we divide (14) by ds, then we shall get

deA

ds
= [

dχχχ

ds
eA] = [ω, eA], (15)

where ω = dχχχ/ds - three-dimensional angular velocity of Frenet's triad with respect to the
instantaneous axis. Writing down Frenet's reference vectors in the form

2The term vector bundle is excepted in mathematics.



a) eA
αe

α
B = δA

B =

{
1 A = B
0 A 6= B

, (16)

b) eA
αe

β
A = δ β

α [] =

{
1 α = β
0 α 6= β

,

A,B... = 1, 2, 3, α, δ, β = 1, 2, 3,

where α, δ, β... � vector indices, and A,B... � triad indices; it is possible to write down
relations (14) and (15) as follows

deA
α = dχβ

αe
A
β or dχβ

α = T β
αγdx

γ, (17)

deA
α

ds
=
dχβ

α

ds
eA

β or
deA

α

ds
= T β

αγ

dxγ

ds
eA

β, (18)

where we have de�ned the designation

Tα
βγ = eα

Ae
A
β,γ = −eA

β e
α
A,γ, , γ =

∂

∂xγ
. (19)

The quantities (19) were �rst introduced by G.Ricci [2] and since then they have been
called Ricci rotation coe�cients. Using the orthogonality conditions (16) and the rule of
transformation to local indices

TA
Bγ = eA

αT
α
βγe

β
B ,

let's rewrite equations (18) in local indices

deA
α

ds
= TA

Bγ
dxγ

ds
eB

α . (20)

Let's chose vectors e(1)
α, e

(2)
α and e(3)

α so, that they coincide with Frenet's vectors, and
thus the vector e(1)

α satis�es conditions (4). Then the equations (20) become the well-known
Frenet's equations (1-3), in which

κ(s) = T (1)
(2)γ

dxγ

ds
, χ(s) = T (2)

(3)γ
dxγ

ds
. (21)

While deducing (1-3) from (20), we used the following relations

dxγ

ds
= eγ

(1) and eγ
(1)e

(1)
γ = 1 .

From the relations (21) it is clear, that in Frenet's equations curvature and torsion are
expressed through components of Ricci rotation coe�cients (19), that proves the statement
1.

The Ricci rotation coe�cients are the part of the connection of absolute parallelism [3]
and have an anti-symmetry on the two lower indices



Tα
[βγ] = −Ω..α

βγ ,

Ω..α
βγ = −1

2
eα

A(eA
β,γ − eA

γ,β), (22)

which it is possible to call Ricci torsion.

3 Frenet's curves as geodesic of the geometry of absolute

parallelism

Let's note, that the curvature and torsion of Frenet's curve would be more correctly called
the �rst and second torsion, as they are both expressed through components of Ricci torsion
(22).
Until to this time we have used as translational coordinates Cartesian ones. Now let's now
from Cartesian coordinates to arbitrary curvilinear ones.
In general case when we have arbitrary curvilinear translational coordinates the metric
tensor of space is represented in the following form

0
gαβ= ηABe

A
αe

b
β, ηAB = ηAB = diag(1, 1, 1),

and translational interval as

ds2 =
0
gαβ dx

αdxβ = ηABe
A
αe

b
βdx

αdxβ . (23)

In arbitrary translational coordinates the total connection of the space can be written down
as

∆α
βγ = Γα

βγ + Tα
βγ = eα

Ae
A
β,γ,

where

Γα
βγ =

1

2

0
g αη(

0
gβη,γ +

0
gγη,β −

0
gβγ,η) (24)

� Christo�el's symbols,

Tα
βγ = −Ω..α

βγ+
0
g αη(

0
gβρ Ω..ρ

ηγ+
0
gγρ Ω..ρ

ηβ) (25)

� Ricci's rotation coe�cients, and Ω..α
βγ is de�ned according to (22). This tensor is distinct

from zero, when, while describing dynamics of rotational motion, angular nonholonomic
coordinates ϕ1, ϕ2, ϕ3 are used.
Now equality (17) will be written as follows

dχβα = ∆α
βγdx

γ, (26)

where quantities
∆α

βγ = eα
Ae

A
β,γ = −eA

β e
α
A,γ. (27)

represent the local connection of a�ne space. Like any connection it has nontensor law of
transformation with respect to transformations of translational coordinates



∆γ′
β′α′ =

∂2xγ

∂xα′∂xβ′

∂xγ′

∂xγ
+
∂xα

∂xα′

∂xβ

∂xβ′

∂xγ′

∂xγ
∆γ

βα.

If now we shall form curvature tensor with the help of connection (27), then it appears to be
equal to zero [3]

Sα
βγη = 2∆α

β[η,γ] + 2∆α
ρ[γ∆

ρ
|β|η] = 0.

By the de�nition, space with zero curvature tensor is called a space of absolute parallelism,
and the relation (27) de�ned the connection of absolute parallelism.
Euclidean space is a particular case of a space of absolute parallelism. Really, from the
formula (27) it is clear that when the rotation is absent (dχα

β = 0, dxγ 6= 0), then the
connection ∆α

βγ becomes zero, thus the space of absolute parallelism becomes Euclidean.

Statement 2. Frenet's equations are equivalent to the geodesic equations of the �rst kind
(the shortest)of the geometry of absolute parallelism.

d2xα

ds2
= −Γα

βγ

dxβ

ds

dxγ

ds
− Tα

βγ

dxβ

ds

dxγ

ds
. (28)

Proof. In arbitrary coordinates equations (18) will be written in the form

a)
deA

α

ds
= Γβ

αγ

dxγ

ds
eA

β + T β
αγ

dxγ

ds
eA

β, or b)
deα

A

ds
= −Γα

βγ

dxγ

ds
eβ

A − Tα
βγ

dxγ

ds
eβ

A, (29)

Since in Frenet's equations the vector eα
(1) = dxα/ds, then, substituting the relation into

equations (29 b), we obtain the geodesic equations (28).

4 Phenomenological Cartan torsion

The above proved statements allow to assert that it is possible to present any curve, de�ned
in space with the �at metric (23), as a geodesics of the space of absolute parallelism with
equation (28). It is direct way to geometrization of physical equations, since any curve can
be considered as trajectory of a particle, which moves in some physical �eld.
We shall name Ricci torsion as geometric one, since it is de�ned through derivatives of
vectors of Frenet triad and is geometrically interpreted as rotation of the triad during its
motion along the curve. As it was shown earlier, the geometric torsion is included in the
structure of connection (27) of absolute parallelism geometry.
Alongside with geometric torsion it is possible to introduce phenomenological Cartan torsion
[4], which has the same symmetry properties, as Ricci torsion, but unlike the latter is not
connected to Frenet triad rotation, since it does not depend on its vectors.
In the beginning proceeding from group properties of space of absolute parallelism with
constant curvature E.Cartan and J. Schouten [5, 6] have introduced connection (27), in
which components of Ricci rotation coe�cients are constants.
The essence of E.Cartan and J. Schouten approach consists in the following. Let on
n-dimensional di�erentiable manifold M with coordinates x1, . . . , xn the �eld of n
contravariant vectors is given



ξj
a = ξj

a(x
k), (30)

where
a, b, c . . . = 1 . . . n

are vector indices, and
i, j, k . . . = 1 . . . n

� coordinate indices.
Suppose that

det(ξj
a) 6= 0

and the functions ξj
a satisfy the equations

ξj
aξ

k
b,j − ξi

bξ
k
a,j = −C ..f

ab ξ
k
f ,

in which constants C ..f
ab have the following properties:

C ..f
ab = −C ..f

ba , (31)

C ..a
fbC

..f
cd + C ..a

fcC
..f
db + C ..a

fdC
..f
bc = 0. (32)

Then we can say that we have n-parametric simple transitive group (group Tn), operating in
the manifold, such that C ..f

ab are structural constants of the group that obey the Jacobi
identity (32). The vector �eld ξj

b is said to be in�nitesimal generators of the group.
Let now the basis ej

a, de�ned in each point of the manifold Ì, satisfy the condition

det(ej
a) 6= 0.

If we suppose that
ej

a(x
k
0) = ξj

a(x
k
0),

where xk
0 are the coordinates of some arbitrary point P, then we have for the functions

ej
a(x

k
0) the equations

ej
ae

k
b,j − ej

be
k
a,j = −C ..f

ab e
k
f . (33)

It follows from the normalization condition for the basis

ea
ie

j
a = δj

i , ea
ie

i
b = δa

b (34)

from equality (33) that
C ..i

jk = 2ei
ae

a
[k,j] = ei

aC
..a
bce

b
je

c
k. (35)

Comparing (35)and (22), we see that

Ω..i
jk =

1

2
C ..i

jk,

i.e. all the components of Ricci torsion of homogeneous space of absolute parallelism are
constant.



It is easily seen that
∆k

[ij] = −Ω..k
ij = T k

[ij] = −1

2
C ..i

jk.

Since the constants don't depend on coordinates or any other variables, then E.Cartan and
J. Schouten introduced the connection with phenomenological torsion [5, 6], which is the
tensor Si

jk with symmetry properties as Ricci torsion. Thus obtained geometric structure is
called Riemann- Cartan geometry with connection

−
Γijk= Γijk + (Sijk − Sjki − Skij), (36)

where Γijk - Christo�el symbols, and Sijk - tensor of Cartan torsion. It is possible to state
with con�dence that the Riemann - Cartan geometry has appeared as a result of
development of the geometry of absolute parallelism.

5 Common properties and distinctions between Ricci

and Cartan torsions

Phenomenological Cartan torsion Si
jk has many common properties with geometric Ricci

torsion Ω..i
jk, however between them there is also an essential di�erence.

5.1 Common properties of Ricci and Cartan torsions

.

• Identical number of independent components and inferior indices antisymmetry

Ω..i
jk = −Ω..i

kj, S..i
jk = −S..i

kj. (37)

• Tensor transformation law with respect to translational coordinates

Ω..i′

j′k′ = Ω..i
jk

∂xj

∂xj′

∂xk

∂xk′

∂xi′

∂xi
, S..i′

j′k′ = S..i
jk

∂xj

∂xj′

∂xk

∂xk′

∂xi′

∂xi
. (38)

• The contorsion tensor is formed by the same way

T i
jk = −Ω..i

jk + gim(gjsΩ
..s
mk + gksΩ

..s
mj), Ki

jk = −S..i
jk + gim(gjsS

..s
mk + gksS

..s
mj) (39)

with symmetry properties

Tijk = −Tjik, Kijk = −Kjik. (40)

• The torsions can be decomposed into irreducible parts in the same manner

Ωi
.jk =

2

3
δi
[kΩj] +

1

3
εn

jksΩ̂
s + Ω

i
.jk, Si

.jk =
2

3
δi
[kSj] +

1

3
εn

jksŜ
s + S

i
.jk, (41)

where
Ωi

.jk = gimgksΩ
..s
mj, Si

.jk = gimgksS
..s
mj

and



� vectors
Ωj = Ωi

.ji, Sj = Si
.ji, (42)

� pseudovectors
Ω̂j =

1

2
εjinsΩ

ins, Ŝj =
1

2
εjinsS

ins, (43)

� traceless parts of torsion

Ω
s
.js = 0, Ωijs + Ωjsi + Ωsij = 0, S

s
.js = 0, Sijs + Sjsi + Ssij = 0. (44)

5.2 Distinctions between Ricci and Cartan torsions

Let's mark the following di�erences between Ricci and Cartan torsion.

• Ricci torsion Ω..i
jk determines change of orientation of frame vectors (i.e. it depends on

angular coordinates)

Ω..i
jk = −1

2
ei

a(e
a
j,k − ea

k,j), i, j, i... = 0, 1, 2, 3, a, b, c... = 0, 1, 2, 3, (45)

and Cartan torsion S..i
jk depends only on translational coordinates xi.

• In space with four translational coordinates the torsion Ω..i
jk is de�ned on

10-dimensional manifold, whereas torsion S..i
jk only on four-dimensional one.

• Torsion Ω..i
jk determines additional (to the translational Riemannian metric) rotational

metric [3]

dτ 2 = T a
bkT

b
andx

kdxn, (46)

and torsion S..i
jk does not.

• Torsion Ω..i
jk allows to present any curve in Riemannian space as geodesics of space of

absolute parallelism. In space with four translational coordinates torsion Ω..i
jk de�nes

three optical parameters: expansion θ, rotation ω and shift σ. These parameters allow
to give a kinematic interpretation to components of torsion Ω..i

jk, in particular to
connect torsion property of a matter with optical parameter of rotation ω. Cartan
torsion has not such property.

• Experiments with electrotorsion Akimov's generators [7] �nd their explanation
through Ricci torsion Ω..i

jk, but not through Cartan torsion S..i
jk.



6 Kinematic interpretation of curvature and torsion in

Frenet's equations

Let's consider an orientable material point3 , which moves along arbitrary curve

x = x(s).

Let this curve is described by Frenet's equations (1-6). To �nd out a physical meaning of
curvature and torsion, let's consider two important limit cases; a) κ 6= 0, χ = 0 and b)
κ = 0, χ 6= 0.

6.1 Curves with κ 6= 0, χ = 0

In this case the equations (1-6) get the following form

a)
de1

ds
= κ(s)e2 , b)

de2

ds
= −κ(s)e1 , c)

de3

ds
= 0 , (47)

a)
d2x

ds2
= κ(s)e2 , b)

d3x

ds3
=
κ(s)

ds
e2 − κ2(s)e1 . (48)

Curves, described by these equations, are "�at", since all their points lie in the same plane.
It is known from mechanics that the orbital moment conservation law is executed when
particles move in �elds with central symmetry along trajectories lying in the same plane.
The derivative

dx

dt
= v,

where t - time, which de�nes the velocity of material point (velocity of the origin of Frenet's
triad) along trajectory. This relation can be written down in the following form

v =
dx

dt
=
dx

ds

ds

dt
= e1

ds

dt
. (49)

Since e1 - the unit vector, then

|v| = ds

dt
= v.

The total acceleration w = d2x/dt2 will be written down as follows

w =
d2x

ds2

(
ds

dt

)2

+ e1
d2s

dt2
. (50)

Using Frenet's equations, we shall obtain from (50)

w = e2κ
(
ds

dt

)2

+ e1
d2s

dt2
= e2κv

2 + e1
dv

dt
. (51)

3Orientable mass point is an orientable point possessing mass m and moment of inertia J .



From relation (51) one can see that the acceleration is decomposed into sum of two terms,
one of which is tangent and is called tangential acceleration

wτ = e1
dv

dt
,

and another is directed along the main normal

wn = e2κv
2

and is called normal acceleration. From the last relation one can see that the curvature of
the curve de�nes normal acceleration of orientable point.

6.2 Curves with κ = 0, χ 6= 0

In this case equations (1-6) will be written in the form

de1

ds
= 0 ,

de2

ds
= χ(s)e3 ,

de3

ds
= −χ(s)e2 , (52)

d2x

ds2
= 0 ,

d3x

ds3
= 0 . (53)

Since equations (53) of this system describe a motion of point M (motion of origin of
Frenet's triad), then we see that in this case the curve, along which the tangent vector e1 is
directed, is "straight". When point M moves along this "straight line", then vectors e2 and
e3 rotate in the plane which is perpendicular to vector e1 .
Using relation ds/dt = v, let's rewrite rotational equations (52) in the form

de1

dt
= 0 ,

de2

dt
= ωe3 ,

de3

dt
= −ωe2 , (54)

where
ω = vχ (55)

- the angular velocity of orientable material point. Since in our case unit vector of particle
momentum is de�ned as

p = m
dx

dt
,

then ω = vχ it is possible to interpret as spirality of the particle. If the polarized wave of
light propagate along a curve with torsion, then its plane of polarization rotates with an
angular velocity (55) (�g.2). Thus torsion generates own angular rotation of material objects.



Figure 2: Turn of light beam polarization plane when it is moving along trajectory with χ 6= 0
and κ = 0

7 Dynamic interpretation of Frenet's equations

From physical point of view the orientable material point represents three-dimensional
accelerated reference system, generally having six degrees of freedom - three translational
and three rotational. Since Frenet's equations (1-6) describe orientable point motion so that
the derivatives of reference vectors are decomposed into that very vectors, then it means,
that Frenet's equations are written down in accelerated reference system.
It is known from mechanics, that in accelerated reference system equations of motion of
material point with mass m under action of inertia forces only has the following form [8]

Finer = −m(W + [ω̇r] + [ω[ωr]] + 2[ωv]) . (56)

Here
F1 = −mW

- translational force of inertia,
F2 = −m[ω̇r]

- inertial force connected with rotational acceleration,

F3 = −m[ω[ωr]]

- centrifugal force of inertia,
F4 = −2m[ωv]

- Coriolis force.
In the accompanying reference system (r = 0) equations (56) have the form

Finer = −mW − 2m[ωv]) . (57)

If besides this three-dimensional rotation of reference system is absent (ω = vχ = 0), then
we have

Finer = −mW. (58)



Comparing equations (51) with (58), we have

−W = e2κv
2 + e1

dv

dt
. (59)

When dv/dt = 0 one can see, that in Frenet's equations the curvature of the curve de�nes
the �eld of inertia generating translational force of inertia.

8 Four dimensional Frenet's equations in Riemannian

space

Let we have an arbitrary curve in four-dimensional Riemannian space with translational
coordinates xi (i=0,1,2,3). Then the curve is de�ned by three scalar invariants
χ1, χ2 and χ3 with the help of four-dimensional Frenet's equations in the following form [9]

De
(0)
k

ds
= χ1e

(1)
k , (60)

De
(1)
k

ds
= ±χ1e

(0)
k + χ2e

(2)
k , (61)

De
(2)
k

ds
= ±χ2e

(1)
k + χ3e

(3)
k , (62)

De
(3)
k

ds
= ±χ3e

(2)
k . (63)

Here vectors e(0)
k , e

(1)
k , e

(2)
k and e

(3)
k form a tetrad, and through D the absolute di�erential

with respect to the four-dimensional Christo�el symbols

Γi
jk =

1

2
gim(gjm, k + gkm, j − gjk,m) (64)

is de�ned. The signs ± in these equations are chosen depending on selection of right-hand
or left-hand tetrad e(a)

k (a=0,1,2,3), and also depending on that time-like or space-like is this
or that tetrad vector [9].

Statement 3. Any curve of Riemannian space can be considered as the �rst kind geodesics
(the shortest) of space of absolute parallelism, with equations of the form

d2xi

ds2
= −Γi

jk

dxj

ds

dxk

ds
− T i

jk

dxj

ds

dxk

ds
. (65)

Proof. Connection of absolute parallelism is de�ned as [3]

∆i
jk = Γi

jk + T i
jk = ei

ae
a
j,k = −ea

je
i
a,k. (66)

These relations can be rewritten as follows

T i
jk = ei

a∇ke
a
j = −ea

j∇ke
i
a, (67)



where ∇k - covariant derivative with respect to Christo�el symbols (64). Multiplying
equality (67) on ea

i (ej
a) and using the orthogonality conditions

ea
ie

j
a = δj

i , ea
ie

i
b = δa

b , (68)

where δ j
i � Cronekker symbols, let's present (67) as follows

a) ∇ke
a
j = T a

bke
b
j or b) ∇ke

i
a = −T i

jke
j
a. (69)

Multiplying (69a) and (69b) on dxk/ds, we shall obtain

Dea
j

ds
= T a

bke
b
j

dxk

ds
. (70)

Dei
a

ds
= −T i

jke
j
a

dxk

ds
. (71)

Uncovering in equations (71) the absolute di�erential and supposing in them ei
(0) = dxi/ds,

we shall obtain geodesics equations (65).
Changing in equations (70) indices on which there is a contraction, we �nd

Dea
k

ds
= T a

bje
b
k

dxj

ds
.

Choosing in these equations the Frenet's tetrad and writing down them component by
component, we have

De
(0)
k

ds
= T

(0)
(1)je

(1)
k

dxj

ds
, (72)

De
(1)
k

ds
= T

(1)
(0)je

(0)
k

dxj

ds
+ T

(1)
(2)je

(2)
k

dxj

ds
, (73)

De
(2)
k

ds
= T

(2)
(1)je

(1)
k

dxj

ds
+ T

(2)
(3)je

(3)
k

dxj

ds
, (74)

De
(3)
k

ds
= T

(3)
(2)je

(2)
k

dxj

ds
. (75)

Comparing equations (60)-(63) with equations (72)-(75), we shall obtain

χ1 = T
(0)
(1)j

dxj

ds
, χ2 = T

(1)
(2)j

dxj

ds
, χ3 = T

(2)
(3)j

dxj

ds
.

Since the quantities T i
kj are de�ned through Ricci torsion (see (67)), then, as it follows from

relations obtained above, it is possible to geometrize any curves of Riemannian space, using
Ricci torsion.

9 Connection between Ricci rotation coe�cients and

inertia �eld in vacuum theory of gravitation

Following Cli�ord - Einstein program of geometrization of physical equations, the author
has found equations of vacuum [3]



∇[ke
a
m] − eb

[kT
a
|b|m] = 0, (A)

Ra
bkm + 2∇[kT

a
|b|m] + 2T a

c[kT
c
|b|m] = 0, (B)

which can be represented as an extended set of Einstein-Yang-Mills equations

∇[ke
a
j] + T i

[kj]e
a
i = 0, (A)

Rjm − 1

2
gjmR = νTjm, (B.1)

Ci
jkm + 2∇[kT

i
,|j|m] + 2T i

s[kT
s
,|j|m] = −νJ i

jkm, (B.2)

with geometrized sources:

Tjm = −2

ν
{(∇[iT

i
|j|m] + T i

s[iT
s
|j|m])−

−1

2
gjmg

pn(∇[iT
i
|p|n] + T i

s[iT
s
|p|n])} (76)

Jijkm = 2g[k(iTj)m] −
1

3
Tgi[mgk]j. (77)

Equations (A) and (B) generalize Einstein vacuum equations

Rik = 0 (78)

and solve the problem of geometrization of energy-momentum tensor, proposed by
A.Einstein [3]. Completely geometrized equations of gravitational �eld (B.1) contain in its
right hand side the energy-momentum tensor (76), formed by Ricci rotation coe�cients and
their derivatives, i.e. Ricci torsion.
Gravitational �eld theory, based on vacuum equations (A) and (B), allows to establish the
connection between Ricci rotation coe�cients and inertia �elds and forces.
In order to prove this let's write down the vacuum equations in spinor basis with the help of
Newman-Penrose spinor coe�cients [10] and Carmeli spinor matrixes [11]

∂CḊσ
i
AḂ

− ∂AḂσ
i
CḊ

= (TCḊ) P
A σi

P Ḃ
+ σi

AṘ
(T+

ḊC
) Ṙ

Ḃ
−

−(TAḂ) P
C σi

P Ḋ
− σi

CṘ
(T+

ḂA
) Ṙ

Ḋ
, (

+

A s)

2ΦABĊḊ + ΛεABεĊḊ = νTAĊBḊ , (
+

B s+.1)

CAḂCḊ − ∂CḊTAḂ + ∂AḂTCḊ + (TCḊ) F
A TFḂ + (T+

ḊC
) Ḟ

Ḃ
TAḞ−

−(TAḂ) F
C TFḊ − (T+

ḂA
) Ḟ

Ḋ
TCḞ − [TAḂ , TCḊ] = −νJAḂCḊ , (

+

B s+.2)

A,C... = 0, 1 , Ḃ, Ḋ... = 0̇, 1̇ .



There is the solution of these equations leading to Schwarzschild-type metric

ds2 =

(
1− 2Ψ0

r

)
c2dt2 −

(
1− 2Ψ0

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2), (79)

where
Ψ0 = MG/c2, (80)

in combining form will be rewritten as [3]:
1. Coordinates: u, r, x2 and x3.
2. Components of Newman-Penrose coe�cients:

σi
00̇ = (0, 1, 0, 0), σi

11̇ = (1, U, 0, 0), σi
01̇ = ρ(0, 0, P, iP ),

σ00̇
i = (1, 0, 0, 0), σ11̇

i = (−U, 1, 0, 0), σ01̇
i = − 1

2ρP
(0, 0, 1, i),

U = −1/2 + Ψ0/r, P = (2)−1/2(1 + ζζ/4), ζ = x2 + ix3,

Ψ0 = const.

3. Spinor components of Ricci rotation coe�cients:

ρ = −1/r, α = −β = −α0/r, γ = Ψ0/2r,

µ = −ε0/r + 2Ψ0/r2, α = ζ/4.

4. Spinor components of the Riemann tensor:

Ψ = −Ψ0/r3.

Using this solution, it is possible to calculate gravitational �elds (Γi
jk) and Ricci rotation

coe�cients (T i
jk) in geodesics equations (65), which in vacuum theory of gravitation are

regarded as equations of motion of orientable material point.
In theory of physical vacuum equations of motion of prob particle coincide with geodesics
equations of absolute parallelism space (65).
For simplicity we shall pass in given solution to quasicartesian coordinates, in which
Schwarzschild-type metric has the form

ds2 = (1− 2MG

rc2
)c2dt2 − (1 +

2MG

rc2
)(dx2 + dy2 + dz2) . (81)

In these coordinates the tetrad ea
i takes the following form

e
(0)

0 = (1 +
2ϕ

c2
)1/2 , (82)

e
(1)

1 = e
(2)

2 = e
(3)

3 = (1− 2ϕ

c2
)1/2 ,

where in brackets tetrad indices are designated and ϕ = −MG/r.



Metric tensor for tetrad (82) can be obtained with the help of relations

gik = ηabe
a

ie
b

k , ηab = ηab = diag(1− 1− 1− 1). (83)

Considering non-relativistic approximation and supposing �elds to be weak, i.e. supposing
that

2ϕ

c2
<< 1 , gik ' ηik , ds ' ds0 = cdt(1− v2

c2
)1/2 , (84)

Ri
jkm '

o

R
i
jkm = 0 ,

v2

c2
<< 1 , ds ' ds0 ' cdt ,

we �nd from equations (65) the following approximate equations of motion of mass m

m
d2xα

dt2
= −mc2(Γα

00 + Tα
00), (85)

α = 1, 2, 3.

Using metric (81) and tetrad (82) and also formulas (64) and (67), we �nd

Γα
00 = −MGxα/r3, Tα

00 = MGxα/r3.

Comparing equations (85) with classical mechanics equations in attendant reference system
[8]

m
d2xα

dt2
= Fα

G −mWα = 0 , (86)

we get that
Fα

G = −mc2Γα
00 = mMGxα/r3 (87)

represents gravitational force generated by gravitational �eld

Γα
00 = −MGxα/r3,

and
−mW α = −mc2Tα

00 = −mMGxα/r3 (88)

is inertial force generated by inertial �eld

Tα
00 = MGxα/r3.

These forces compensate each other, locally creating condition of weightlessness.
Thus by direct calculations on particular example it was shown that Ricci rotation
coe�cients describe inertial �elds generating inertial forces. Therefore nature of inertial
�elds and forces is connected with Ricci torsion of space - time, with consistent description
of inertial �elds and forces requiring introduction of the geometry of absolute parallelism [3].

10 Ricci torsion in vacuum electrodynamics

From equations of vacuum (A) and (B) the equations of vacuum electrodynamics follow [3].
In this electrodynamics the e�ects of Ricci torsion generated by spin of charged particles are
exhibited.



As in usual electrodynamics in vacuum electrodynamics approximate equations of motion of
radiating charge are written as

mẍ = eE +
e

c
[ẋH] +

2e2

3c3
...
x , (89)

however in vacuum electrodynamics the reaction force of the radiation

2e2

3c3
...
x

contains Ricci torsion generated by spin of the charge. Indeed, choosing time t as a parameter
in equations (1-3) one can see, that

ẋ = ve1, ẍ = ae1 + kv2e2
...
x= (ȧ− κ2v3)e1 + (3vaκ+ v2κ̇)e2 + κχv3e3,

where
ẋ = dx/dt, ds = vdt, a = v̇, ȧ = d3/dt3 κ̇ = dκ/dt.

For reaction force of the radiation we have

Frad =
2e2

3c3
{(ȧ− κ2v3)e1 + (3vaκ+ v2κ̇)e2 + κχv3e3}. (90)

From these equations one can see that the reaction force of the radiation in vacuum
electrodynamics has complex structure. It contains terms generated not only by external
electromagnetic �elds, but also by torsion. The last term in right hand side of equation
(90) contain torsion χ, therefore accelerated particle possessing a spin, radiates at the same
time electromagnetic and torsion �elds (�elds of Ricci torsion). This theoretical conclusion is
excellently con�rmed by numerous experimental facts [7].

It is necessary to note that until now special experiments on research of structure of the
reaction force of the radiation were not carried out. Only the surprising N.Tesla devices are
known permitting to transmit electromagnetic energy by a way, not explained by conventional
electrodynamics.

10.1 Theoretical evaluation of electrotorsion radiation in vacuum

electrodynamics

Using relation (90), it is possible to produce approximate evaluation of magnitude of force
of electrotorsion interaction and to compare it with forces of electromagnetic and gravitational
interactions. For this purpose we shall consider an electron as a sphere having radius equal
to Compton radius of an electron

λ =
h̄

mc
= 3, 6× 10−11sm. (91)

All calculations we shall conduct in SGSE system. Let us present spin of electron as

s = Jω = Jvχ =
h̄

2
, (92)



where the moment of inertia J of electron is calculated as a moment of inertia of the sphere
with radius (91)

J =
2

5
mλ2,

and ω = vχ - the angular velocity of rotation of electron. From relation (92) we �nd this
quantity for electron

ω ≈ 1021rad/s. (93)
Let us suppose now that the electron radiates at transition from one stationary level

to another in atom of hydrogen. Let thus it approximately be the �rst Bohr orbit (E ≈
108 V/sm). Then it is easy to calculate the force of electromagnetic Fe and gravitational Fg

interaction of electron with the nucleus:

|Fe| = eE = mκiht
e = mv2κe =

e2

r2
0

≈ 4, 8× 10−2 din, (94)

|Fg| = mG = mκint
g = mv2κg =

γmMn

r2
0

≈ 0, 6× 10−42 din.

From the equality (90) for the force of electrotorsion interaction we �nd

|Fκχ| =
2e2

3c3
κintω. (95)

With the help of formula (94) we shall obtain κint = v2κ ≈ 1025 sm/s2.
Substituting this quantity in (95) and taking into account (93), we �nd the value of

electrotorsion interaction force
Fκχ ≈ 2, 9× 10−4 din. (96)

Thus, the electrotorsion force of electron radiation in the nucleus appears to be weaker than
electrostatic force and stronger than force of gravitational interaction, that also is observed in
experiment [7].

11 Theoretical research of physical properties of torsion

�elds

This section includes a broad circle of problems, therefore, for brevity, we shall restrict
ourselves only by enumeration of properties of torsion �elds, basing on equations of vacuum
(A) and (B).

As it was shown in [3], in the theory of vacuum there are two types of torsion �elds
generated by Ricci torsion:

a) primary torsion �elds generated by Absolute "Nothing";
b) secondary torsion �elds generated by matter.

11.1 Properties of primary torsion �elds

Primary torsion �elds are the space-time vortexes satisfying equations [3]

∇[iT
i
|j|m] + T i

s[iT
s
|j|m] = 0, (97)



Comparing this relation with de�nition of energy-momentum tensor of matter (76) in equa-
tions of vacuum (A) and (B), we get zero value of this tensor for primary torsion �eld

E =
∫
T jmgjm(−g)

1
2 dV ≡ 0. (98)

The exact solution of vacuum equations in this case shows that torsion �eld is distinct
from zero and capable to rotate a plane of polarization of polarized light wave [3]. Here we
have the case, when the �eld T i

jk bears the information without energy transmission. The
trajectory of a probe particle in primary torsion �eld will vary under operation of a �eld
according to equations of motion

d2xi

ds2
+ Γi

jk

dxj

ds

dxk

ds
+ T i

jk

dxj

ds

dxk

ds
= 0,

but in this interaction the energy of particle remains constant (interaction without energy).
For an object, which energy is equal to zero, it is impossible to formulate a concept of

speed of its propagation. For the usual observer such object is "at once everywhere and
always", i.e. its "speed of propagation" is instantaneous.

The creation of primary torsion �elds can be considered as primary polarization of vacuum
according to its spin properties, with right-hand and left-hand �elds simultaneously arising .

The experiments on creation of arti�cial torsion polarization of vacuum by introducing
in some its area a material objects with various surface geometry show [7], that right-hand
and left-hand primary torsion �elds simultaneously arise. The geometry of space in this case
represents 10-dimensional manifold (4 translational coordinates and 6 angular ones), and its
Riemannian curvature Ri

jkm being equal to zero, and Ricci torsion being distinct from zero
and satisfying to equations (97).

"Propagation" of primary torsion �elds with "instantaneous speeds" happens on phase
portrait of these �elds, but not with the help of group velocity, as it happens with usual
physical �elds. It indicates a holographic structure of torsion �elds.

11.2 Properties of secondary torsion �elds

Secondary torsion �elds are connected with rotation of material objects. They substan-
tially save the properties of primary torsion �elds, however, in di�erence from the last, in a
bound state they can considerably change potential energy of material systems. For example,
the potential of interaction of spinning mass M , found on the base of precise solution of the
vacuum equation, looks like

ϕs = − MGr

r2 + r2
scos

2θ
, (99)

where rs - Kerr parameter [3]. When the rotation of the mass is absent, this parameter
becomes equal to zero and we have usual Newton potential. On distances r ≈ rs the rotation
gives signi�cant contribution to potential energy of interaction.

It is possible to show that parameter r ≈ rs generates torsion

χ(s) = T (2)
(3)γ

dxγ

ds
(100)



in nonrelativistic equations of motion and results in energy changes during motion of a system.
Let now in ratio (99) M = 0, but rs 6= 0, that corresponds to the solution for primary torsion
�eld. It is easy to see that the potential (99) in this case becomes equal to zero, and torsion
�eld (100) is distinct from zero and is capable to transmit information. This result can be
treated as a capability of secondary torsion �elds to become free, gaining the properties of
primary ones. In the given example vanishing of the potential of interaction indicates high
penetrating ability of secondary (and primary) torsion �elds, if they are not in a bound state.

Collecting outcomes, let us enumerate the main properties of torsion �elds obtained as a
result of the theoretical analysis of the vacuum equations:

• Information transmission without carrying energy.

• The speed of propagation is in�nite.

• High penetrating ability.

• Holographic nature.

• Ability in a bound state to change energy.

References

[1] Frenet F. Jour. de Math. 1852. Vol. 17. P. 437-447.

[2] Ricci G. Mem.Acc.Linc. 1895. Vol. 2. Ser. 5. P. 276-322.

[3] Shipov G.I. A Theory of a physical vacuum, Ì.: Nauka, 1997. 450 p.

[4] Schouten J.A. , Stroyk D.D. Introduction into new methods of di�erential geometry. V.2.
M.: GIIL, 1948.

[5] Cartan E., Schouten J. // Proc. Knkl. nederl. akad. 1926. Vol. 29. P. 803-810.

[6] Cartan E., Schouten J. // Ibid. P. 933-938.

[7] Akimov A.E. Heuristic discussion of search for new long-range actions. The EGS-
concepts. M.: CISE VENT, 1991, 63 p.

[8] Ol'hovskiy I.I. Course of theoretical mechanics for physicist. M.: Nauka, 1970.

[9] Rashevskiy P.K. Riemannian geometry and tensor analysis. M.: Nauka, 1964.

[10] Newman E., Penrose R. // J. Math. Phys. 1962. Vol. 3, No 3. P.566-587.

[11] Carmeli M.// Phys. Rev.D. 1972. Vol. 5. P. 5-8.


