Напечатать документ Послать нам письмо Сохранить документ Форумы сайта Вернуться к предыдущей
АКАДЕМИЯ ТРИНИТАРИЗМА На главную страницу
Сухонос С.И.
Часть I. Масштабный порядок Вселенной

Oб авторе
Ровно 100 лет назад М. Планком в докладе на заседании немецкой Академии наук были впервые предложены так называемые планковские величины1, в частности ставшая с тех пор знаменитой планковская длина:
где ћ — постоянная Планка, G — гравитационная постоянная, с — скорость света. Этот размер представляет собой некий предельно допустимый минимальный размер, на масштабе которого еще действуют известные нам законы физики. Проникновение же в структуру материи глубже либо вообще невозможно, либо требует создания новой физики, либо приведет к попаданию в другую вселенную, аналогичную нашей (см., напр., работу М.А. Маркова2). В любом из этих вариантов планковская длина является фундаментальной нижней границей нашего мира.
Со стороны мегамасштабов проникновение астрономии во все более удаленные уголки Вселенной привело к тому, что удалось увидеть границы Метагалактики на расстояниях порядка 1027 см. Правда, в теоретической модели Большого взрыва далекие рубежи нашей Вселенной находятся еще на порядок дальше — около 1028 см. Итак, в ХХ веке наука сумела на многие порядки раздвинуть масштабные границы нашего мира.
При этом оказалось, что наш мир ограничен не только в размерах, но и в масштабах.
Если есть какие-либо границы, то, безусловно, крайне любопытно узнать, что же находится в центре между ними? Что же равноудалено как от одного масштабного края Вселенной, так и от другого? Другими словами, где расположен масштабный центр Вселенной?
При этом необходимо помнить, что традиционное представление о середине мира здесь не может быть использовано, ведь речь идет не о привычном пространственном кубике, в центре которого пересекаются диагонали. Вопрос ставится иначе. Найти между масштабными границами середину — значит подобрать объекты «срединного масштаба», т. е. такие, которые были бы во столько раз больше фундаментальной длины, во сколько раз они меньше самой Вселенной.
На первый взгляд в этом поиске нет физического смысла, ведь объектов с такими размерами может быть во Вселенной огромное множество. Однако простим себе праздное любопытство и все же определим, какие именно объекты во Вселенной находятся в масштабной середине ее иерархического устройства.
Рис. 1.1. Масштабный интервал размеров объектов Вселенной (от фундаментальной длины М. Планка – 10–32,8 см до Метагалактики – 1028,2 см), расположенный на масштабной оси (М-оси), и его масштабный центр (МЦВ)
Масштабный центр найти очень просто. Для этого достаточно построить логарифмическую ось размеров объектов Вселенной (в принципе при этом безразлично, какое основание логарифма мы возьмем, хотя для подсчетов удобнее взять основание десять), отложить на ней границы Вселенной по микромиру и мегамиру и поделить полученный отрезок пополам (см. рис. 1.1). Точка в центре этого отрезка имеет значение 10–2,3 см или 5 10–3 см, т. е. около 50 микрон.
Полученное значение, во-первых, радует своей доступностью (такие объекты можно разглядеть в обычный микроскоп), а во-вторых, удивляет своей точностью. Ведь границы — Бог знает где! Одна — за пределами возможностей телескопов, другая — на самом дне микромира, а здесь — 50 микрон. Уже 5 или 150 микрон — достаточно далеко от этой точки.
Поэтому интересно определить, какие же распространенные в естественной природе объекты имеют размеры такого порядка.
В неживой природе — это размер пылинок и зерен в минералах, т. е., казалось бы, ничего особенного, но вот в живой природе в этом выделенном центральном месте всего масштабного интервала нашего мира находится биологическая клетка в ее среднегеометрическом размере (см. рис. 1.2). Причем важно отметить, что этот среднегеометрический размер свойствен всем видам ядерных клеток: одноклеточным, растительным и животным.



Максимон
Клетка

Метагалактика
10-32,8см 50 микрон 10+28,2см
Рис. 1.2. Масштабные границы нашей Вселенной таковы, что точно в центре масштабного интервала находится живая клетка, которая во столько раз больше мельчайшей частицы Вселенной - максимона, во сколько раз она меньше ее верхней границы - Метагалактики
Более того, именно такие размеры имеют и половые клетки большинства живых существ, независимо от их размеров. Например, клетка лисы, полевой мыши, комара, слона и… клетка человека, с которой после ее оплодотворения начинает свой путь в этот видимый мир из масштабного центра Вселенной каждый из нас!
Итак, используя лишь общеизвестные данные астрофизики, мы получаем совершенно неожиданный и интригующий результат:

В масштабном центре Вселенной
расположена живая клетка —
фундамент всей жизни на Земле.

Учитывая гигантский размах масштабного интервала Вселенной — 61 порядок(!), нет оснований считать этот научный факт следствием слепой случайности. Помня же о том, что подавляющее большинство информации — о нашем организме, о нашем характере, внешности и, скорее всего, судьбе — мы получаем в наследство, можно уверенно утверждать, что генетический человек «переходит» из поколения в поколение через «узкое горлышко» масштабного канала с «сечением» около 50 мкм. При этом наше наследственное «Я», сохраняемое в каждой клетке, всегда находится точно в масштабном
центре Вселенной!
Итак, центральный размер масштабного диапазона нашего мира принадлежит живой клетке, которая во столько раз больше фундаментальной длины, во сколько раз она меньше Метагалактики. И это — вряд ли случайный факт, скорее — ключ к пониманию жизни во Вселенной.
Однако чтобы сделать окончательный вывод, нам предстоит совершить увлекательное путешествие в мир новых для науки закономерностей, открыть для себя множество ранее никому не известных симметрий. Нам предстоит совершить длительное путешествие в мир масштабных закономерностей. И чтобы не поддаться на соблазн приписывания действительности тех закономерностей, которых в ней нет, мы будем твердо придерживаться простого правила: использовать только многократно проверенные научные факты и данные, опираться на такую фактологию, которая практически уже не подвергается сомнению в науке.
Вернемся к масштабному диапазону.
Если говорить о надежных, проверенных экспериментами и наблюдениями границах, то весь наш видимый мир (от протона до Метагалактики*) заключен в пределах размеров от 10–13 до 1027 см, что составляет ровно 40 порядков (13+27). Если же принять во внимание вполне вероятные и чаще всего признаваемые теоретические границы масштабов нашего мира, то необходимо рассматривать уже 61 порядок (от 10–33 до 1028 см — от максимона до Метагалактики).
Что находится за пределами этого интервала — вопрос чисто теоретический, и его исследование часто ведет к парадоксальным выводам (см., в частности, модель «Микро-Макросимметрической Вселенной» М.А. Маркова 3). Мы же ставим перед собой другую задачу: посмотреть, как организована внутренняя лестница масштабов Вселенной, на ступеньках которой расположены элементарные частицы, атомы, клетки, животные, планеты, звезды, галактики и их всевозможные соединения и системы. Посмотреть с целью узнать, существует ли масштабный порядок мироустройства или его нет.
На первый взгляд этот вопрос лишен какого-либо научного смысла — столь разные системы сопоставляются друг с другом. Поэтому лишь в научно-популярных трудах иногда появляются картинки (см., напр., книгу Б.А. Воронцова-Вельяминова 4), на которых сопоставляются масштабы атомов, молекул, городов, Солнечной системы, галактик и других объектов. Эти картинки призваны дать понять начинающему ученому, что разброс размеров изучаемых наукой объектов огромен, и отчасти уже поэтому каждый масштабный срез нашего мира требует отдельного изучения.
Правда, однажды наука натолкнулась на странный масштабный порядок, которому трудно дать какое-либо объяснение, но который и невозможно игнорировать. Еще в начале века А. Эддингтоном и П. Эренфестом была обнаружена уникальная масштабная закономерность: оказалось, что разумная комбинация из различных космологических констант дает в результате одно и то же безразмерное число, близкое к 1040 или его кратное. Эта проблема привлекала внимание всех известных физиков, таких, как Эйнштейн, Гамов, Дирак, и других ученых, занимавшихся мировоззренческими проблемами устройства Вселенной. Оказалось, что полученный результат не следовал ни из одной теории, а многолетние попытки найти ему объяснение показали, что его нельзя и вывести из какой-либо известной физической теории.
Проблема получила название «проблема Больших чисел». Она заключается в том, что существуют загадочные численные совпадения некоторых безразмерных численных отношений, составленных из атомных констант, скорости света и следующих космологических констант: возраста Вселенной tp, радиуса Вселенной Rp, средней плотности вещества во Вселенной rp и гравитационной постоянной G. Оказалось, что различные осмысленные комбинации этих констант дают удивительно одинаковую безразмерную величину:
Как мы видим, масштабный интервал в 40 порядков, который протянулся от протона до Метагалактики, свойствен не только соотношению размеров, но и соотношению масс, сил и времен. Некоторое время эти непонятные соотношения оставались предметом отдельного исследования. В 30-х годах на них обратил пристальное внимание П. Дирак, который понял, что они не случайны, а проявляют собой глубокую связь между космологией, гравитацией и электричеством. Он выдвинул гипотезу, что физические константы меняются со временем, и сформулировал следующий постулат — принцип Дирака: «Любые две очень большие (примерно 1040) безразмерные физические величины связаны простым математическим соотношением, в котором коэффициенты — величины порядка единицы»5.
Поскольку же этому принципу подчиняется и соотношение (1.5), в которое входит возраст Вселенной, то тут же встал вопрос:
— либо этот принцип действует во Вселенной всегда, но тогда с учетом изменяющегося возраста должны меняться космологические и атомные константы;
— либо данный принцип выполняется только в небольшой промежуток времени существования Вселенной, и тогда мы живем в каком-то особенном выделенном моменте ее развития.
Чтобы проверить первую версию, астрофизики провели теоретические исследования, направленные на поиск ответа: постоянны ли физические постоянные? Положительный ответ был получен с очень высокой точностью6.
Однако в ходе проверки выяснился еще один парадокс: оказалось, что любые, самые незначительные изменения физических констант приводят к тому, что вся Вселенная оказывается совершенно иной. Из этого следовал очевидный вывод: все константы «подобраны» таким образом, чтобы получилась Вселенная, в которой могла быпоявиться жизнь, включая человека . Важным следствием из этого вывода является то, что все константы нашей Вселенной имеют не случайное значение, а строго увязанное друг с другом через неизвестный современной астрофизике закон их гармонизации.
Обсуждение учеными этих результатов привело к появлению двух противоположных версий:
  1. 1. Гипотеза множественности вселенных (в частности, ее развивает
    Б. Картер 7). Согласно этой гипотезе, вселенных — почти бесконечное множество. Все они разные, и физические константы в них принимают какое угодно значение. Лишь в одной из вселенных благодаря случайному стечению обстоятельств константы приняли такое значение, что появилась возможность возникновения жизни.
  2. Гипотеза глобального единства всех параметров Вселенной (в частности, ее развивает Дж. Уилер). Согласно этой гипотезе, Вселенная — одна, но в ней глобальные и локальные законы эволюции стянуты в один тугой концептуальный узел, что позволяет Уилеру задать следующий вопрос 8:
«А не замешан ли человек в проектирование Вселенной более радикальным образом, чем мы думали до сих пор?»
Проблема увязки физических констант нашего мира с возможностью существования человека настолько взбудоражила научный мир, что собственно породившая ее проблема Больших чисел ушла в тень и оказалась на периферии внимания. Она так и осталась неразгаданным феноменом природы и лишь изредка упоминается в обзорных космологических работах.
В 70-х годах я, совершенно ничего не зная об этой проблеме, поставил перед собой весьма смелую мировоззренческую задачу: определить, есть ли в масштабной иерархии Вселенной какой-либо самостоятельный порядок устройства.
Поскольку порядок можно определить, только опираясь на количественные критерии, то нужно было выбрать такой параметр, который был бы универсален и свойствен всем системам без исключения. Время, масса, силы, размер и другие параметры были рассмотрены мной на предмет их универсальности и доступности. Оказалось, что наиболее полная информация о всех без исключения объектах Вселенной относится к их геометрическим характеристикам, а в самом простом виде — к их размерам (длинам волн и т.п.).
Во-первых, все вещественные объекты без исключения имеют размеры, и сравнивать их друг с другом можно именно по этому параметру. Этот подход, кстати, согласуется с позицией таких физиков, как Дж.Уилер и Д. Блохинцев, которые считали, что всю физику можно свести к геометрии. В частности, Д. Блохинцев писал: «...Закономерности геометрии являются самыми общими и простирают свою власть и значимость на любые события и явления в мире, который мы знаем»9.
Во-вторых, большинство наиболее распространенных объектов Вселенной всех уровней ее организации имеют весьма стабильные размеры. Следовательно, сравнение объектов именно по размерам может привести к достаточно надежным и устойчивым выводам.
В-третьих, все полевые процессы можно оценить по длинам их волн.
В-четвертых, если все объекты и процессы во Вселенной объединяет общий гармонический принцип, то он обязан проявиться через распределение объектов по размерам и распределение полевых связей через длины волн; если же гармонии во Вселенной нет, то в расположении всех объектов на масштабной шкале должен царить хаос.
Используя самые распространенные справочные данные о размерах объектов Вселенной, я стал постепенно располагать их на шкале десятичных логарифмов
(М-оси), и вот тут-то проявилась поразительная закономерность: оказалось, что наиболее типичные объекты Вселенной занимают в своих средних размерах на
М-оси места строго через 10
5. Более того, многие ключевые системные свойства объектов Вселенной (структурных и динамических) имеют подобие с коэффициентами 1010, 1015, 1020. Впервые эти результаты были доложены на Первой конференции по теории классификации в городе Борок в 1979 году и опубликованы в научно-популярном журнале «Знание — сила»10. Затем последовали еще две публикации11,13, которые в сжатом виде показывали основные закономерности открытого явления.
Рассмотрим теперь выявленную закономерность более детально.

Сухонос С.И. Часть I. Масштабный порядок Вселенной // «Академия Тринитаризма», М., Эл № 77-6567, публ.11007, 16.02.2004

[Обсуждение на форуме «Масштабная гармония Вселенной»]

В начало документа

© Академия Тринитаризма
info@trinitas.ru