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Abstract: The present study is aimed at the revelation of subtle effects of steam flow through a 

conical coil heat exchanger on an enzyme, incubated near the heat exchanger, at the nanoscale. For 

this purpose, atomic force microscopy (AFM) has been employed. In our experiments, horseradish 

peroxidase (HRP) was used as a model enzyme. HRP is extensively employed as a model in food 

science in order to determine the influence of electromagnetic fields on enzymes. Adsorption 

properties of HRP on mica have been studied by AFM at the level of individual enzyme 

macromolecules, while the enzymatic activity of HRP has been studied by spectrophotometry. The 

solution of HRP was incubated either near the top or at the side of the conically wound aluminium 

pipe, through which steam flow passed. Our AFM data indicated an increase in the enzyme 

aggregation on mica after its incubation at either of the two points near the heat exchanger. At the 

same time, in the spectrophotometry experiments, a slight change in the shape of the curves, 

reflecting the HRP-catalyzed kinetics of ABTS oxidation by hydrogen peroxide, has also been 

observed after the incubation of the enzyme solution near the heat exchanger. These effects on the 

enzyme adsorption and kinetics can be explained by alterations in the enzyme hydration caused by 

the influence of the electromagnetic field, induced triboelectrically by the flow of steam through the 

heat exchanger. Our findings should thus be considered in the development of equipment involving 

conical heat exchangers, intended for either research or industrial use (including miniaturized 

bioreactors and biosensors). The increased aggregation of the HRP enzyme, observed after its 

incubation near the heat exchanger, should also be taken into account in analysis of possible adverse 

effects from steam-heated industrial equipment on the human body. 

Keywords: horseradish peroxidase; enzyme aggregation; atomic force microscopy; triboelectric 

effect; coiled heat exchanger; superheated steam 

 

1. Introduction 

The motion of various liquid [1–8], gaseous [9,10], and two-phase [11–14] media 

along solid surfaces is known to cause the so-called triboelectric effect, which consists in 

the generation of an electric charge. The triboelectric effect in liquid media is now actively 

studied, being utilized in triboelectric nanogenerators [3–5,12,13,15,16]. The electric 

charge, generated in such a way, accordingly induces electric/electromagnetic fields. In 

this regard, the occurrence of electromagnetic fields induced triboelectrically upon the 

motion of water [6,17] and non-aqueous liquids [7,8,18,19] through pipes—including 

coiled ones [6,7]—should be mentioned. Coiled pipes (or simply coils) find numerous 
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applications in heat exchanging equipment [20–22]. These heat exchangers can be 

organized in the form of cylindrical [22] and conical [23–25] coils. 

In industrial coil heaters, steam is often employed as a heat-transfer agent [26]. In this 

connection, one should emphasize the occurrence of significant electrostatic effects upon 

the motion of steam [27–30]. These effects can even cause emergency situations in industry 

[31]. Accordingly, further investigation of these effects is required in order to develop 

safety standards regulating the steam-carrying equipment operation. 

Electromagnetic [32–39] and magnetic [40–43] fields are known to affect 

physicochemical properties of enzymes. With regard to triboelectrically induced fields, 

they were reported to influence adsorption properties [6–8] and enzymatic activity [7] of 

horseradish peroxidase (HRP), which is often used as a model in studying the effects of 

electromagnetic and magnetic fields on enzymes [6–8,32–34,36–43]. Enzyme systems play 

key roles in the regulation of metabolic processes in the body [44]. This is why it is quite 

important to study the possible influence of electromagnetic fields, induced in steam-

carrying heat exchangers, on enzyme systems. 

The study of peroxidases is of great interest because these enzymes are well-

represented in plant and animal tissues [44] and play important functional roles in the 

body. In the human body, in particular, an important role of myeloperoxidase involved 

in atherogenesis should be mentioned [45]. HRP is a ~44 kDa heme-containing enzyme 

[46,47], which is widely employed as a model in food science [36,37] in order to determine 

the influence of electromagnetic fields on enzyme systems [36–39]. HRP finds numerous 

applications in biotechnology [48,49] and in miniaturized biosensor systems [50,51], and 

this is another reason why it is extensively studied. 

In the present work, with the example of HRP, we investigated whether the motion 

of steam through a conical heat exchanger affects the properties of the enzyme. The 

solution of HRP was incubated either near the apex or at the side of the conically wound 

aluminium pipe, through which steam flow passed. In order to study the adsorption 

properties and aggregation state of HRP before and after the incubation of its solution 

near the heat exchanger, atomic force microscopy (AFM) was used, while the HRP 

enzymatic activity was studied by spectrophotometry.  

Owing to its ultra-high (0.1 nm) height resolution, AFM represents a powerful tool, 

which is widely employed for single-molecule investigation of enzymes [52–62]. In this 

way, AFM was employed to investigate the immobilization of ferredoxin-NADP+ 

reductase [52] and HRP [53] onto silanized mica. AFM was widely employed to reveal the 

aggregation state of HRP [6–8,32–34] and CYP102A1 [54] enzymes, and to study complex 

formation in the CYP11A1 enzyme system [55]. Berge et al. revealed a dimerization of the 

EcoKI enzyme after its binding with a DNA containing two recognition sites for the 

enzyme—as opposed to the case with a DNA containing one recognition site, when only 

a monomeric enzyme was observed [56]. By high-speed AFM, Crampton et al. visualized 

the interaction of EcoP15I with DNA, revealing two distinct mechanisms of this interaction 

[57]. By AFM, van Noort et al. [58] observed association, dissociation, and movement of 

photolyase over DNA macromolecules. Furthermore, in a number of publications, 

Radmacher and colleagues reported the use of an AFM-based approach for the direct 

observation of enzyme activity, which manifested itself in the form of height fluctuations 

of enzymes upon their interaction with respective substrates [59,60]. Namely, 1 nm height 

fluctuations of lysozyme macromolecules were revealed in the presence of an 

oligosaccharide substrate; moreover, such fluctuations were not observed without the 

substrate, or in the presence of lysozyme inhibitor chitobiose [59]. Measuring such height 

fluctuations allows one to directly observe single catalytic events of the enzyme; this has 

also been demonstrated with the example of chitosanase from Streptomyces griseus [60]. In 

[61], with the example of urease enzyme, immunoglobulin G, and microtubules, 

differences in height fluctuations above different macromolecules were revealed. 

Moreover, the use of AFM for studying lateral drift rate of urease macromolecules on 

silanized glass substrates was demonstrated [61]. Ivanov et al. [62] revealed that the 
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amplitude of height fluctuations of oligomeric CYP102A1 enzyme was higher than that of 

monomeric CYP102A1 in the first 100 s of the enzyme functioning. After 100 s, a drop in 

the height fluctuation amplitude was observed, and this drop was explained by possible 

self-degradation of the enzyme [62].  

The above-mentioned studies clearly demonstrate the ability of AFM to reveal even 

subtle effects of external factors on enzyme macromolecules [34]. Such subtle effects are 

often indistinguishable by macroscopic methods and can only be revealed by 

nanotechnology-based methods such as AFM [6,32–34]. This is why this method has been 

employed herein. This study has been aimed at the investigation of the influence of steam 

flow in a conical coil heat exchanger on individual HRP macromolecules incubated in its 

vicinity. The adsorption of HRP on mica has been investigated by AFM at the level of 

individual enzyme macromolecules. In parallel, spectrophotometry measurements of the 

HRP enzymatic activity in solution have been performed. Figure 1 displays the general 

workflow of the experiments performed. 

 

Figure 1. Schematic representation of general workflow of the experiments performed in order to 

investigate the influence of steam flow in conical heat exchanger on HRP enzyme. 

By AFM, we demonstrated that the flow of superheated steam in the conical coil 

affects the adsorption properties of HRP macromolecules on mica. Namely, for the first 

time, an increased aggregation of the HRP enzyme on the mica substrate has been 

observed by AFM after its incubation either near the top or at the side of the conical heat 

exchanger. At the same time, such an incubation has been found to cause a change in the 

shape of the kinetic curve reflecting the HRP-catalyzed oxidation of its substrate 2,2′-

azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS). The results obtained herein should 

be taken into account in the development of equipment involving conical heat exchangers, 

intended for either research or industrial use. Additionally, our data reported can also 

contribute to further analysis of possible adverse effects from steam-heated industrial 

equipment on human body. 
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2. Materials and Methods 

2.1. Chemicals and Enzyme 

Peroxidase from horseradish (Cat. #6782), and its substrate 2,2′-azino-bis(3-

ethylbenzothiazoline-6-sulfonate) (ABTS; Cat. #A1888) were purchased from Sigma (St. 

Louis, MO, USA). Disodium hydrogen orthophosphate (Na2HPO4), citric acid, and 

hydrogen peroxide (H2O2) were all of analytical or higher purity grade, and were 

purchased from Reakhim (Moscow, Russia). Dulbecco’s modified phosphate buffered 

saline was prepared by dissolving a salt mixture, commercially available from Pierce 

(Waltham, MA, USA), in ultrapure water. All solutions used in our experiments were 

prepared using deionized ultrapure water (with 18.2 MΩ × cm resistivity), obtained with 

a Simplicity UV system (Millipore, Molsheim, France). 

2.2. Experimental Setup 

In order to investigate the influence of steam flow through a conical coil heat 

exchanger on HRP, we used an experimental setup, which is schematically shown in 

Figure 2. 

 

Figure 2. Experimental setup. Arrow indicates the direction of the steam flow. The heat exchanger 

was covered with a thermal shield. 

In the setup, superheated water steam was generated by means of a 20 L superheater 

operating at a pressure of 190 atm. After water in the superheater reached a temperature 

of 190 °C, the valve was opened, and the superheated steam passed through the conical 

coil, exiting through the linear output part of the coil. The temperature distribution was 

as follows: at the coil input, the steam temperature was 100 °C; at the cone half-height, the 

temperature decreased to 84 °C; at the top of the cone, the temperature was 75 °C; and at 

the heat exchanger output (40 cm away from the cone), the steam temperature was 70 °C. 

The temperature was measured with an RST RST07851PRO contact thermometer (RST, 

China). The steam flow time was four minutes. The coil was formed using an aluminium 

pipe, and had the following dimensions: the base diameter was 80 cm, the apex angle was 

51°, and the height was 90 cm. The heat exchanger was covered with a thermal shield, 

fabricated from metallized polypropylene. The test tube with 1 mL of 10−7 M HRP solution 

in 2 mM, pH 7.4 Dulbecco’s modified phosphate buffered saline (PBSD) was placed either 

2 cm above the top (Pos. 1 in Figure 1) or at the side (Pos. 2 in Figure 1) of the conical coil, 
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and incubated there for three minutes. The control enzyme sample in the same test tube 

was placed 50 m away from the experimental setup. 

After the incubation near the conical coil, the enzyme solution was investigated by 

AFM and by spectrophotometry according to the techniques described in our previous 

papers [6–8,32–34]. 

2.3. Atomic Force Microscopy 

The AFM samples were prepared using the direct surface adsorption method 

developed in [63] according to the well-established technique described in detail in our 

previous papers [6–8,32–34]. Mica AFM substrates with adsorbed HRP were investigated 

with a Titanium multimode atomic force microscope (NT-MDT, Zelenograd, Russia; the 

microscope pertains to the equipment of “Human Proteome” Core Facility of the Institute 

of Biomedical Chemistry, supported by Ministry of Education and Science of Russian 

Federation, agreement 14.621.21.0017, unique project ID: RFMEFI62117X0017). The 

microscope was equipped with NSG10 cantilevers (TipsNano, Zelenograd, Russia; 47 to 

150 kHz resonant frequency, 0.35 to 6.1 N/m force constant). After processing the AFM 

data, relative distributions of the visualized HRP particles with height (ρ(h) distributions) 

were calculated using the software developed at the Institute of Biomedical Chemistry in 

collaboration with Foundation of Perspective Technologies and Novations as described 

by Pleshakova et al. [64]: 

ρ(h) = (Nh/N) × 100%, (1)

where Nh is the number of imaged enzyme particles of height h, and N is the total number 

of the imaged particles [64]. The number of frames obtained for each substrate was ≥10. 

For each enzyme sample studied, the AFM measurements were performed in at least three 

independent technical replicates. Blank experiments were performed with the use of 

enzyme-free buffer instead of HRP solution, and no objects with heights exceeding 0.5 nm 

were detected in the blank experiments. 

2.4. Spectrophotometry 

HRP activity was estimated according to the technique described in detail by Sanders 

et al. [65] using ABTS as the HRP substrate. The measurements were performed as 

described in our previous papers [6–8,32–34] in phosphate-citrate buffer with pH 5.0 [65] 

with an Agilent 8453 UV-visible spectrophotometer (Agilent Technologies Deutschland 

GmbH, Waldbronn, Germany). Namely, a 2.96 mL volume of 0.3 mM ABTS solution in 

phosphate-citrate buffer (51 mM Na2HPO4, 24 mM citric acid, pH 5.0) was mixed with a 

30 µL volume of 0.1 µM HRP solution in a 3-mL quartz cell of 1 cm pathlength (Agilent 

Technologies Deutschland GmbH, Waldbronn, Germany). Accordingly, the final 

concentration of the enzyme in the cell was 1 nM. Then, 8.5 mL of 3% (w/w) H2O2 was 

pipetted into the cell, and spectrum acquisition was started immediately. Absorbance of 

the solution in the cell was monitored at 405 nm [65]. At this wavelength, the millimolar 

extinction coefficient of oxidized ABTS amounts to ε405 = 36.8 mM−1cm−1, and its 

concentration at each time point t of the measurement was calculated based on the Beer–

Lambert law [66]: 

[oxidized ABTS] = (A405(t) − A405(t = 0))/(ε405 × l), (2)

where A405 is the absorbance of the solution in the cell at 405 nm, and l is the cell pathlength 

(l = 1 cm). 

The behaviour of the HRP enzyme in the ABTS oxidation reaction was estimated on 

the basis of time dependencies of the concentration of oxidized ABTS, which was 

calculated based on the absorbance of the solution in the cell at 405 nm (Equation (2)). 
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3. Results 

3.1. Atomic Force Microscopy 

Figure 3a,b displays typical AFM images obtained in the experiments with 10−7 M 

HRP solution in 2 mM, pH 7.4 Dulbecco’s modified phosphate buffered saline (PBSD) 

incubated for three minutes at either 2 cm above the top or at the side of the conical coil 

with flowing steam. In the control experiments, the HRP solution was incubated 50 m 

away from the coil (Figure 3c). 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Figure 3. Typical AFM images of mica surface with adsorbed HRP (left) and respective cross-

section profiles (right) obtained for HRP solutions incubated either 2 cm above the conical coil (a), 

to the side of the coil (b), or 50 m away from the coil ((c), control experiment). For all AFM images, 

the scan size is 2 µm × 2 µm, and the Z scale is from 0 to 2 nm. 

The images shown in Figure 3 indicate that in all experiments, HRP adsorbs onto 

mica in the form of compact objects, whose height typically does not exceed 1.4 nm. After 

processing the AFM data obtained for all the enzyme samples studied, the respective ρ(h) 
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distributions were plotted. Figure 4 displays the ρ(h) distributions obtained for the 

samples incubated either near or 50 m away from the conical coil. 

 

Figure 4. Relative ρ(h) distributions of the mica-adsorbed HRP particles obtained for the HRP 

samples incubated either 2 cm above the conical coil (red), to the side of the coil (blue), or 50 m away 

from the coil (black, control experiment). 

As can be seen from Figure 4, for the control solution, the majority of objects are 1 nm 

in height, while the content of objects with heights within the 1.6–2.4 nm range is 

insignificant. In contrast, for the HRP solution incubated either above the coil or near its 

side, the respective ρ(h) curves clearly display a significant increase in the content of 

higher (1.6 nm to 2.6 nm) objects, which contribute to the right wing of the ρ(h) 

distributions. Previously, we showed that in case of direct adsorption of HRP onto mica, 

objects of 1–1.2 nm height pertain to the monomeric form of HRP, while HRP aggregates 

on mica are characterized with greater heights [32]. Accordingly, the results of our AFM 

measurements obtained herein indicate an increased aggregation of HRP on mica after 

the incubation of its solution near the conical coil with flowing steam. 

3.2. Spectrophotometry 

HRP activity measurements were performed for all the samples studied by AFM. 

Figure 5 displays time dependencies of concentration of oxidized ABTS in the 

HRP:ABTS:H2O2 system, obtained by measuring the solution absorbance at 405 nm for all 

the HRP samples studied. 
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Figure 5. Time dependencies of concentration of oxidized ABTS in the HRP-ABTS-H2O2 system for 

HRP samples incubated either 2 cm above the conical coil (red), to the side of the coil (blue), or 50 

m away from the coil (black, control experiment). Measurement conditions: HRP:ABTS:H2O2 = 1 

nM:2.5 mM:0.3 mM; pH 5.0; solution absorbance was monitored at 405 nm wavelength; cell 

pathlength was 1 cm, solution temperature was 25 °C. 

The curves shown in Figure 5 indicate that after five minutes, the absorbance of the 

HRP:ABTS:H2O2 reaction mixture is similar for all the enzyme samples studied. 

Furthermore, it is to be noted that the shape of the curve recorded for the control enzyme 

sample is slightly different from that of the curves recorded for both the samples 

incubated in the vicinity of the coil.  

4. Discussion 

In our present study, the influence of steam flow through a conical coil heat 

exchanger on the HRP enzyme has been studied. At the coil input, the steam temperature 

was 100 °C, and after passing the coil top, the temperature dropped down to 70 °C. In our 

experiments, the samples of HRP solution have been incubated at either 2 cm above the 

top or 2 cm from the side of the conical coil, while the control sample was incubated 50 m 

away from the coil. By AFM, an increase in the content of the aggregated form of HRP on 

mica has been revealed after the incubation of the enzyme near the coil—as compared 

with the control enzyme sample. Moreover, it is interesting to note that such an incubation 

has also led to a slight change in the enzyme behaviour in the ABTS oxidation reaction. 

Namely, the shape of the A405(t) kinetic curve recorded for the control enzyme sample is 

slightly different from that of the curves recorded for both the samples incubated near the 

conical coil (either above the coil or near its side). Additionally, the A405(t) curves recorded 

for both the samples incubated near the coil are barely distinguishable from each other, as 

their shape is the same. These are the very samples for which a well-pronounced 

aggregation on mica has been observed by AFM. 

These effects can take place at the expense of a change in the degree of enzyme 

hydration. This phenomenon can be explained in the following way. 

The degree of enzyme hydration depends on external conditions. Water is known to 

be a spin-nonequilibrium mixture of para- and ortho-isomers of H2O [67]. It is known to 

contain ice-like clusters, corresponding to the para-isomers, even at a temperature of 

about 99 °C [68]. This means that even at high temperatures, water is spin-nonequilibrium. 

When a heated steam moves through a pipe (which forms a coil), boundary layers form 

on the inner surface of the pipe. The temperature of the aqueous environment of these 

layers should change, thus leading to a change in the ratio between ortho- and para-H2O 
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isomers. This, in turn, can induce radiation similar to that described in [69]; this happens 

at the expense of ortho- to para-isomer transitions, which take place owing to quantum-

mechanical resonance phenomena. Such a radiation can stimulate enzyme hydration at 

nearby points, as was noted by Pershin [70,71]. The change in enzyme hydration can also 

explain the slight change in the behaviour of the enzyme in the ABTS oxidation reaction, 

since enzyme hydration was reported to be one of the factors influencing enzymatic 

activity [72–74]. 

The results obtained indicate that steam flow in a conical coil heat exchanger affects 

the physicochemical properties of HRP enzyme. Since enzymes play key roles in the 

regulation of processes in human body [44], this phenomenon should be taken into 

account in the development of equipment involving conical heat exchangers, intended for 

either research or industrial use with respect to the possible influence on the equipment 

operators. Moreover, the course of pathological processes is associated with the enzymes 

participating in the formation of functionally important multiprotein complexes: for 

instance, inflammatory processes in the body are mediated by the dimeric form of 

myeloperoxidase [45]. Naturally, if a peroxidase changes its aggregation state under the 

influence of steam flow in a coiled heat exchanger, then it may influence the course of 

inflammation-associated pathologies. Furthermore, protein aggregation can lead to 

changes in hemodynamics in small vessels, but at the same time, it can affect pathological 

changes associated with the functioning of enzymes in other organs of the body. 

5. Conclusions 

In our AFM experiments reported herein, a 3 min incubation of 0.1 µM aqueous 

solution of HRP in the vicinity (at a 2 cm distances) of a conical coil heat exchanger, 

through which a steam flow passed, has been found to cause an increase in the 

aggregation of individual macromolecules of the enzyme on mica. Moreover, by 

spectrophotometry, a slight change in the behaviour of the enzyme in the reaction of ABTS 

oxidation in solution has also been revealed after such an incubation. These effects on the 

enzyme adsorption and kinetics can be explained by alterations in the enzyme hydration, 

which were caused by the influence of the electromagnetic field induced triboelectrically 

by the flow of steam through the heat exchanger. Since conical heat exchangers are known 

to be used in biosensors and bioreactors (in which enzymes can be utilized), the effects 

revealed herein should be considered in the development of bioreactors and biosensors 

(including miniaturized ones) intended for either research or industrial use.  
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