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Abstract    
 

The article proves the insolvability of the 4-th Hilbert Problem for hyperbolic geometries. It has 

been hypothesized that this fundamental mathematical result (the insolvability of the 4-th Hilbert 

Problem) holds for other types of non-Euclidean geometry (Riemannian geometry (elliptic 

geometry), non-Archimedean geometry, and Minkowski geometry). The ancient Golden Section, 

described in Euclid’s Elements (Proposition II.11) and the following from it Mathematics of 

Harmony [1], as a new direction in geometry, are the main mathematical apparatus for this 

fundamental result. By the way, this solution is reminiscent of the insolvability of the 10-th 

Hilbert Problem for Diophantine equations in integers. This outstanding mathematical result was 

obtained by the talented Russian mathematician Yuri Matiyasevich in 1970 [2], [3] by using 

Fibonacci numbers, introduced in 1202 by the famous Italian mathematician Leonardo from Pisa 

(by the nickname Fibonacci), and the new theorems in Fibonacci numbers theory, proved by the 

outstanding Russian mathematician Nikolay Vorobyev and described by him in the latest edition 

of his book “Fibonacci numbers” [4]. 

Аннотация 

В статье доказана неразрешимость 4-й проблемы Гильберта для гиперболических 

геометрий. Выдвинута гипотеза о том, что этот фундаментальный математический 

результат (неразрешимость 4-й проблемы Гильберта) справедлив для всех типов 

неевклидовой геометрии (геометрии Риммана (эллиптическая геометрия), неархимедовой 

геометрии, геометрии Минковского). Античное Золотое Сечение, описанное в «Элементах 

Евклида» (предложение II.11) и вытекающая из него «Математика гармонии» [1], как новое 

направление в геометрии, является основным математическим аппаратом для этого 

фундаментального результата. Кстати, это решение напоминает неразрешимость 10-й 

проблемы Гильберта для диофантовых уравнений в целых числах. Этот выдающийся 
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математический результат был получен талантливым русским математиком Юрием 

Матиясевичем в 1970 г. [2], [3] с использованием чисел Фибоначчи, введенных в 1202 г. 

известным итальянским математиком Леонардо из Пизы (по прозвищу Фибоначчи), и 

новых теорем в теории чисел Фибоначчи, доказанных выдающимся русским математиком 

Николаем Воробьевым и описанных им в последнем издании его книги «Числа 

Фибоначчи» [4].  

1. Hilbert's Problems [5] - [8] 

 

    David Hilbert is a German mathematician, who made a significant contribution to the 

development of many areas of mathematics. In 1900, from 6 to 12 August 1900, the II International 

Congress of Mathematicians was held in Paris. At this Congress, Hilbert presented his report 

"Mathematical Problems", in which he proposed his famous twenty-three problems of mathematics.  

     Currently, the 11 problems among the 23 problems have been solved. The 6 problems 

have been partially solved. For the two problems, mathematicians have no consensus, the 4-th and 

23 problems are formulated too vaguely to judge whether they are solved or not (for more details 

see [5] - [8]). 

 . 

2. The 4-th Hilbert Problem  
 

 In the list of the 23 Hilbert Problems, the 4-th Problem is formulated as follows: 

    "Enumerate the metrics, in which the lines are geodesic."  

 The problem poses the task studying geometries, “near” (in a certain sense) to Euclidean 

geometry. Hilbert explains the meaning of the 4-th Problem as follows:  

 “A more general question, arising in this case, is the following: is it possible from other 

fruitful points of view to construct geometries that with the same right could be considered closest 

to ordinary Euclidean geometry ...” 

 Under those nearst to Euclidean geometry, Hilbert indicated Lobachevsky geometry 

(hyperbolic geometry), Riemannian geometry (elliptic geometry), non-Archimedean geometry, 

and Minkowski geometry. 

 

3. The fifth postulate of Lobachevsky 

This postulate sounds as follows: 

 “If a straight line and a point lie on a plane, then at least two straight lines can be drawn 

through this point that do not intersect with the first straight line”. 
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                   Figure   1. Illustration of the fifth postulate of Lobachevsky 

 

 Thus, the Lobachevsky hyperbolic geometry admits that on the same plane there can be 

several straight lines at once that do not intersect each other.  But in the Euclidean geometry, 

through a point that does not belong to this straight line, we can draw one and only one straight 

line, that does not intersect with this straight line. 

      On February 11, 1826 at the Kazan University meeting of the Physics and Mathematics 

Section Lobachevsky made a speech about the discovery of new geometry. During 1829-30 he 

published five articles with the title “On the Principles of Geometry”, dedicated to this topic in the 

journal “Kazan Bulletin”, published at the Imperial Kazan University.  

 (see http://www.raruss.ru/russian-thought/597-lobachevsky.html ). 

 The work "On the Principles of Geometry" was, at Lobachevsky’s request, presented in 

1832 by the Council of Kazan University to the Academy of Sciences. The Academy's conference 

meeting had decided to give Lobachevsky's work to academician M.V. Ostrogradsky, the 

acknowledged leader of the Russian Empire mathematicians. In his review M.V. Ostrogradsky 

wrote the following: 

 “The author apparently set himself the goal of writing in such a way that he could not be 

understood. He achieved this goal. Everything that I understood in Lobachevsky's geometry is 

lower than mediocre. Lobachevsky’s book does not deserve the attention of the Academy. ”  

(see: http://dfgm.math.msu.su/files/encyclopedia/Lobachevski220.pdf ) 

 Among other colleagues, almost no one supported Lobachevsky either, misunderstanding 

and ignorant ridicule grew. Trying to find understanding abroad, in 1837 Lobachevsky published 

his article "Imaginary Geometry" in the German journal “Krell”. 

 Lobachevsky’s geometry was widely recognized and widely adopted only 12 years after 

his death, when it became clear that a scientific theory, built on the basis of a certain axiom 
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system, is considered only fully completed, when this axiom system satisfies to three conditions: 

independence, consistency and completeness. It is precisely these properties that Lobachevsky's 

geometry satisfies. 

 It is important to note that the Hungarian mathematician Janos Bolyai also came to similar 

conclusions about Lobachevsky's geometry, and the famous German mathematician Karl 

Friedrich Gauss (1777 –1855) came to such conclusions even earlier. Gauss generally refrained 

from publishing on this topic, and Bolyai’s works did not attract attention, and he soon abandoned 

this topic. 

 As a result, Nikolay Lobachevsky remained as the first and unique most consistent 

propagandist of new geometry. 

 

4. Particular solutions to the 4-th Hilbert Problem. 

The dissertation of German mathematician Georg Hamel [9], defended in 1901 under Hilbert’s 

supervision, was the first contribution to the solution of this problem. 

 As it is indicated later in the article of the American geometer Busemann [10], “Hamel’s 

work, of course, did not exhaust everything that can be said about Fourth Hilbert Problem, other 

approaches to which were repeatedly proposed later”.      

         Let’s dwell in more detail on the important contribution to the solution of this problem, 

made by the outstanding Soviet mathematician A.V. Pogorelov [11]. The summary to Pogorelov’s 

book [11] states the following:  

 "The book contains a solution to the well-known Hilbert’s problem on the definition of all, 

up to isomorphism, realizations of the systems of axioms of classical geometries (Euclidean, 

Lobachevsky, elliptic), if we omit the congruence axioms, containing the concept of angle, and we 

supplement of   these systems with the axiom of “triangle inequality”: the length of any side of the 

triangle always does not exceed the sum of the lengths of its two other sides". 

           However, if Pogorelov replaces the axioms of congruence of angles on the axiom of 

“triangle inequality”, then for every of the next geometries: Euclidean geometry (Euclid), 

hyperbolic geometry (Lobachevsky), elliptic geometry (Riemann), when we realize these 

geometries, the axiom of the congruence of angles becomes the theorem of the congruence of 

angles. Otherwise, Pogorelov’s system of axioms cannot satisfy to three conditions: 

independence, consistency and completeness. Therefore, after the actual proof of this newly 

emerged theorem on the congruence of angles, when we realize Pogorelov's axioms, all previous 
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systems of axioms for Euclidean, Lobachevsky and Riemann geometries are automatically 

restored.  

       This is Pogorelov’s contribution to the 4-th Hilbert Problem, and, therefore, what he did, is 

the particular, but not the complete solution to the 4-th Hilbert Problem. 

5. Authors’ particular solution to the 4-th Hilbert Problem, based on the 

hyperbolic Fibonacci λ -functions [12-18] 

       Definitions and sourses. From this point of view, Hilbert recommended, above all, to 

consider Lobachevsky’s hyperbolic geometry. The purpose of this section is the particular 

solution to the 4-th Hilbert Problem, which consists in constructing an infinite set of new 

geometries, “near” to Lobachevsky’s geometry, but with other metric properties. The 

mathematical basis for such solution is the creation by the authors of the general algorithm: 

the authors used for this purpose Stakhov’s book “The Mathematics of Harmony. From Euclid 

to Contemporary Mathematics and Computer Science” [1]. The Mathematics of Harmony and 

the 4-th Hilbert Problem is the way to the Harmonic Hyperbolic and Spherical Words of 

Nature [14].  The «Golden» Non-Euclidean  Geometry [14], the so-called "metallic" 

proportions by Vera Spinadel [15], Stakhov and Rozin’s symmetrical hyperbolic functions 

[16] and Stakhov’s hyperbolic Fibonacci λ -functions [17], [18] were used by the authors in 

the study of the 4-th Hilbert Problem.  

 The “metallic” proportions [15], indicated by the symbol λΦ , are given by the Spinadel’s 

formula  
2

4 2λλ
λ

++
=Φ  [15]. For all values of ),( +∞−∞∈λ , the function λΦ >0. For 

−∞→λ λΦ ,0→  for 0=λ  λΦ =1, for +∞→λ  λΦ +∞→ .  For 1λ = , the formula 

2

4 2λλ
λ

++
=Φ  is reduced to the classical golden proportion 

2

51+
=Φ  , that is, the 

Spinadel’s metallic proportion λΦ  is a generalization of the formula for  the golden proportion 

2

51+
=Φ . 

      The hyperbolic Fibonacci λ -sine  and λ -cosine [17, 18] have the following forms, 

respectively:   
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          For the value of λ =1, the hyperbolic Fibonacci λ -sine and λ -cosine are reduced to the 

symmetrical hyperbolic Fibonacci sine sF(x) and cosine cF(x) [16], respectively  (more in details 

see [13],[14]).   

 Lobachevsky metric and Lobachevsky classical metric. Denote by  

П
+
: { +∞<<−∞+∞<< vu ,0 } the half-plane on the plane П:{ +∞<<−∞+∞<<∞− vu , }. 

 We equip the half-plane П
+
 with the metric, which, by following to the terminology [19], 

is called the Lobachevsky metric.  This metric has the form ( ) ( ) ( )( )[ ]22222
sh dvuduRds += , where  

ds is the length element. The coefficient 0>R  is called the radius of curvature of this metric, and 

the Gaussian curvature of this metric is K −=
2

1

R
 < 0 .  

 The concepts of Gaussian curvature and radius of curvature of a metric [14],[19].  

Classical  Lobachevsky’s metric is given on all the plane  

П':{ +∞<<−∞+∞<<∞− ',' vu } and has the form ( ) =
2

'ds (du')
2
 + ch

2 







'

1
u

R (dv’)
2
, where R >0 

is the radius of curvature of the classical Lobachevsky metric [20], [21] . There is shown in [20], 

that for the given radius R=1 the classical Lobachevsky metric is isometric to the Lobachevsky 

metric (the concept of isometry will be given below). In addition, according to the formulas, 

indicated below, it is easy to show that Gaussian curvature for the classical Lobachevsky metric 

with 'R =R  is also equal to K −=
2

1

R
 < 0 .       

 Isometric displaying and isometry [22]. Let f  be a displaying from the metric space A to 

the metric space 'A ,  that is,  f (А)∈ 'A  . If the displaying of  f  preserves the distance between the 
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points, that is, from the conditions {x,y}∈А and {x'=f (x), y’=f(y)}∈ 'A  it  follows  

),( yxλρ = 'λρ ))('),('( yfyxfx == , then  the displaying  f : A → 'A  is called isometric.    

 The isometric displaying  f : A → 'A  is called isometry of the metric space A to the metric 

space 'A ,  and the spaces  А and 'A  are isometric. The isometric spaces А and 'A  are called 

homeomorphic, if the displaying  f : A → 'A   is a one-to-one and mutually  continuous displaying. 

 Isometric surfaces [22]. Isometric surfaces in Euclidean or Riemannian spaces are such 

surfaces, between which there is the isometry with respect to internal metrics, induced on them by 

the metric of the ambient space. 

 When we compare on the isometry (preservation of lengths) of two internal metrics on 

surfaces, the following property is important (Gaussian theorem) [23]: 

 “For the displayings that preserve length (isometry), the Gaussian curvature at the 

corresponding points is the same, that is, 'K K=  

     There is explained in [23] that if the displaying is isometric (preserves the lengths of the 

curves), then it is also conformal (preserves angles) and equiareal (preserves areas). Conversely: 

if the displaying is conformal and equiareal, then it is isometric. 

 But then it follows from the Gauss theorem that the displaying at the corresponding points 

their Gaussian curvatures K и К'  are inconsistent (K ≠ K'), then this  displaying are nonisometric 

(don’t preserves the lengths).  Therefore, when K ≠ K', by virtue of the Gauss theorem and the 

above remark about isometry [23], we get that if the displaying is nonisometric (does not save 

length), then, a priori, only the following situations are possible: 

1) either the displaying is nonconformal (does not preserve angles) and nonequiareal (does not 

preserve areas); 

2) either the displaying is nonconformal (does not preserve angles), but is equiareal (save areas); 

3) either the displaying is conformal (preserve angles), is nonequiareal (does not preserve areas). 

 The first quadratic form. Let us give the necessary known facts of differential geometry 

of surfaces. Let the surface М 
2  

be given in parametric form: 

                               М 
2
:   x = x (u, v), y = y (u, v), z = z (u, v),  

where (u, v) belong to any area D of surface parameters. 

      The first quadratic form (that is, the differential of arc length) in this case looks as follows: 

222 )(2)()( dvGFdudvduEds ++= , where  

E = E(u, v) > 0, F = F(u, v), G = G(u, v) > 0, EG – F
2 

> 0. 
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   Let the surfaces of М
2 

: {x=x(u,v), y=y(u,v), z=z(u,v)} and  

М' 
2
: {x' (u,v), y'=y' (u,v), z'=z' (u,v)}  are given in one and the same area  

П: { +∞<<−∞+∞<< vu ,0 } for the parameters u, v (possibly after changing the parameters). 

 The table below presents the necessary and sufficient condition on the metric of a general 

form, induced from space, when the indicated metric properties under a one-to-one displaying 

2 '2:f M M  of the surface 2M on the surface М'
 2

  remain unchanged. 

Table of the comparison of metric properties [23] 

Displayings Necessary and sufficient conditions imposed on 

the metric form 

Preserving lengths 

(isometric) 
E = E', F= F', G = G' 

Preserving angles 

(conformal) 
E= λ0E', F = λ0F', G= λ0G', λ0  > 0 

Preserving  areas  

(equiarial) 

E G  – (F)
2
 = E'G'  – (F' )2 

            In the given Table  E, F, G   and  E', F', G' are coefficients of the metric forms,  

corresponding to the points M (x, y, z) ∈ М
2 

  and  M'  (x', y', z' ) ∈ М ' 
2 

 . These metric forms have 

the following forms: 

222 )(2)()( dvGFdudvduEds ++= , where E = E(u, v) > 0, F = F(u, v), G = G(u, v) > 0, 

EG – F
2 

> 0, 

(ds' )
2
 =E' (du )

2
+2F' dudv+G' (dv)

2
, where E'=E' (u, v) > 0,F' = F' (u, v),  

G' = G' (u, v) > 0, 

 E' G' – F' 
2  

> 0.   

 The construction of new metrics, "near" to the Lobachevsky metric, having other 

metric properties. As the basic metric, we will consider the Lobachevsky metric: 

(ds )
2
 = ( du )

2
 +sh

2
 (u) ( dv )

2
, 

given in the half-plane П + :{ +∞<<−∞+∞<< vu ,0 }. The coefficients of the basic Lobachevsky 

metric have the following form: Е=1, F=0, G= sh
2
 (u) >0. This metric has the radius of curvature 

R=1 and, therefore, the Gaussian curvature  K 2

1

R
−=  .1−=   
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      In this situation, the Lobachevsky basic metric is realised on the pseudo sphere  

М 
2
: 1222 =−− YXZ  in the three-dimensional Minkowski space (X, Y, Z), endowed with 

Minkowski metric ( ) ( ) ( ) ( )
2 2 2 2

dl dZ dX dY= − − for parameterization    

                                X = sh(u) cos(v), Y = sh(u) sin(v),  Z = ch(u).   

      As metrics, which will be compared with the basic Lobachevsky metric, in order to study 

the discrepancy of metric properties with the basic Lobachevsky metric, we will consider the types 

of metrics, set for any values of the coefficients { 1,0 ±≠≠ αα } and at the values of the 

parameters (u,v), on the half-plane П:{ +∞<<−∞+∞<< vu ,0 }, as the basic Lobachevsky 

metric. We will name them as comparative metrics.  A view of these comparative metrics will be 

indicated below. More complex types of comparative metrics are given in authors’ monograph 

[14].    

        Further, besides the first approach of comparing the main Lobachevsky metric 

(ds )
2
 = ( du )

2
 +sh

2
 (u) ( dv )

2
  with comparative metrics in terms of ordinary hyperbolic functions 

- hyperbolic sine sh or hyperbolic cosine сh, depending on the parameter u of the coefficient α ,  

the second approach is also used.  

       This second approach is based on the use of hyperbolic Fibonacci −λ  functions, namely 

the hyperbolic Fibonacci −λ sine λsF  or  hyperbolic Fibonacci −λ cosine  λcF , dependent on the 

parameter u and the coefficient λ (see [17]). 

        The connection between the hyperbolic functions in the first approach and the second 

approach is carried out by replacing the coefficient α  by the coefficient λ  according to the 

formula 2=λ sh( =⇔ αα ) arsh(
2

λ
) ≡ ln( )λΦ , where the function  

2

4 2λλ
λ

++
=Φ  in [15]  is 

named “metallic proportion”.   

          For the cases  4,3,2,1=λ ,  the following special terms to the values of the function  λΦ : 

golden, silver, bronze, and copper proportions  are assigned  in [15]. 

      In order to be able to talk about the "proximity" of these comparative metrics to the main 

metric of Lobachevsky (ds )
2
 = (du)

2
 +sh

2
(u) (dv)

2
, pre-entered, two functions ρ = ),(αρ ρ = 

)(λρ  from the above factors λα , },{ +∞−∞∈  of the kind   12 −= αρ 0≥ , ρ = 01)]([ln2 ≥−Φλ . 

When replacing =α ln( )λΦ , we get )(λρ = ρ ( =α ln( )λΦ )= 1)]([ln2 −Φλ .  The above functions 
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ρ and ρ  are named the “distance” of the comparative metrics from the main Lobachevsky metric, 

respectively, in the first and second approaches.   

        When  1±=α  (the first approach) and, accordingly, when 2=λ sh( )1( ±=α = ± 2.3504 

(the second approach ) we get ρ =0, ρ =0 (coincidence of the comparative metrics with the 

Lobachevsky metric).  When 1±≠α , 3504.2±≠λ  we get ρ >0, ρ >0 (noncoincidence of the 

comparative metrics with Lobachevsky metric). 

 

6. Particular solution of the fourth Hilbert problem for hyperbolic geometries 

 Theorem 1.   Among the infinite set  Ω  of the hyperbolic metrics of negative Gaussian 

curvatures there is an infinite subset 0Ω  of the comparative metrics with the same negative 

Gaussian curvature K= 1− , and the different negative Gaussian curvatures K ≠ 1− ,  which are 

arbitrarily near to the Lobachevsky Gaussian curvature metric K= 1− . There is a single general 

algorithm of the detection of the comparative metric properties, based on the Taylor power series 

decomposition; this algorithm are   satisfying to the following conditions: 

1) when comparing any comparative metric with the Lobachevsky metric, nonisometry, non-

conformity and nonequivariality take place; 

2) when comparing two pairs of comparative metrics with each other, nonisometry, nonconformity 

and nonequivariality take place. 

 The first type of comparison of metrics with {u>0, ),( +∞−∞∈v }.                       

     The basic Lobachevsky metric has the form: (ds )
2
 = ( du )

2
+sh

2
 (u) ( dv )

2
 and its Gaussian 

curvature is equal K 1−= ). The comparative metric of the first type has the form: 

2)'(ds = +22 )(duα  sh 2 ( )uα ( 2)dv ,{ 1,0 ±≠≠ αα } and its Gaussian curvature is equal 1' −=K ; in 

this case: 1' −== KK . 

  Representation of comparisons of the metrics of the first type in terms of hyperbolic 

Fibonacci λ -functions. Let’s assume that we have: 

 =α ln( λΦ ) 2=⇔ λ sh )(α ,{ 1,0 ±≠≠ αα } ⇔ { 3504.2,0 ±≠≠ λλ }. Then, we get the metric  

(ds )
2
 = ( du )

2
 +sh

2
 (u) ( dv )

2
  with the Gaussian curvature K 1−= ;  and let’s consider the next 

example of the metric  
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2)'(ds =ln
2
 ( λΦ ) +2)(du sh

2
[u• ln( λΦ )] ( 2)dv =ln

2
 ( λΦ ) +2)(du

4

4 2λ+
)(2

usFλ  ( 2)dv  

 with the Gaussian curvature 1' −=K , that is, 1' −== KK . 

            The second type of comparison of the metrics with {u>0, ),( +∞−∞∈v }.                                                 

The basic Lobachevsky metric has the form: ( ds )
2
 = ( du )

2
 +sh

2
 (u) ( dv )

2
  and its the Gaussian 

creature is equal: K 1−= . The comparative metric of the second type has the following form: 

2)'(ds = +2)(du
2

1

α
sh 2 ( )uα ( 2)dv , { 1,0 ±≠≠ αα } and its  Gaussian curvature is equal: 

0' 2 <−= αK ); here we have: KK ≠' .  

 Representation of the second type of comparison of metrics in terms of hyperbolic 

Fibonacci λ -functions. Let’s assume the following: 

 =α ln( λΦ ) 2=⇔ λ sh )(α ,{ 1,0 ±≠≠ αα } ⇔ { 3504.2,0 ±≠≠ λλ }. Then, for this case we get 

the metric: ( ds )
2
 = ( du )

2
 +sh

2
 (u) ( dv )

2
  with the Gaussian curvature K 1−= . By using the 

hyperbolic Fibonacci λ -functions, we can represent the example of the second type of  the 

comparative metric as follows: 

2)'(ds = +2)(du
)(ln

1
2

λΦ
sh 2 [u• ln( λΦ )] ( 2)dv = +2)(du

)(ln

4
22

2

λ

λ

Φ

+
)(2

usFλ  ( 2)dv . 

The Gaussian curvature has the form: 0)(ln' 2 <Φ−= λK  and consequently KK ≠' .  

 The basic Lobachevsly metric   has the form:  (ds )
2
 = ( du )

2
  +sh

2
 (u) ( dv ) and the 

geodesic curvature 1−=K . Then, for the condition 
0λΦ =e , were e ≈2.71828,  we get: 

)(' 0λК = 1−=K .  For this case we have:  =−±= )
1

(0
e

eλ ± 2.3504.   

 The question of constructing other geometries with negative Gaussian curvatures, nearest 

to the Lobachevsky geometry, but having different metric properties in comparison with it 
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(nonisometric, nonconformal, noninequal), is fundamental. Such geometries, nearest to 

Lobachevsky's geometry, are also the nearest geometries (in Hilbert sense) and to Euclidean 

geometry.   

  The Gaussian curvature of comparative metrics of the first kind. Let the comparative 

metric of the first kind be given:  

2)'(ds = +22 )(duα  sh 2 ( )uα ( 2)dv , where { 1,0 ±≠≠ αα , u>0, +∞<<∞− v }.  

 The coefficients of this metric are as follows:  

Е'=
2α >0,  F'=0, G'=sh

2
(α u) >0. 

 The Gaussian curvature for this case is equal:  .01' <−=K  But then the radius of 

curvature R’  of the first comparative metric 2)'(ds = +22 )(duα sh 2 ( )uα ( 2)dv  is equal 

R’= .1
'

1
=

− K
  

 The first comparative metric is realized for parameterization:       

                  X’ =  sh(α u)cos(v), Y’ = sh(α u)sin(v’),  Z’ =ch(α u)   

on the pseudo-sphere  M’ 
2
 : Z’

2
 – X’

2
- Y’

2
 = 1, Z’ ≥ 1 in three-dimensional Minkowski space (X, 

Y, Z), endowed with the Minkowski metric ( ) ( ) ( ) ( )2222
dYdXdZdl −−= . 

    On the pseudo-sphere  M ‘ 
2
 : Z’

2
 – X’

2
- Y’

2
 = 1  , Z’ ≥ 1  with the above parameterization 

of the comparative metric we get the relation: 

        ( ) ( ) ( ) =−−− ]'''[
222

dYdXdZ 2)'(ds = +22 )(duα  sh 2 ( )uα ( 2)dv  . 

     Thus, with 12 −= αρ 0> , the comparative metric of the first type   

2)'(ds = +22 )(duα  sh 2 ( )uα ( 2)dv , { 1,0 ±≠≠ αα ,u>0, +∞<<∞− v } 
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has the same geodesic curvature 1' −=K , as the geodesic curvature 1−=K  of the basic 

Lobachevsky metric (ds )
2
 = (du )

2
 +sh

2
 (u)( dv )

2
. The carrier of these two metrics turned out to be 

the same pseudo-sphere: Z
2
 – X

2
- Y

2
 = 1, Z ≥ 1  

               Gaussian curvature of comparative metrics of the second kind. Let the comparative 

metric of the second type be given: 2)'(ds = +2)(du
2

1

α
sh 2 ( )uα ( 2)dv ,  where  

{ 1,0 ±≠≠ αα ,u>0, +∞<<∞− v }. The coefficients of this metric are the following:   Е'=1>0,  

F'=0, G'=
2

1

α
sh

2
(α u) >0. 

  The Gaussian curvature for this case is equal: К’= .02 <−α  It follows from here that the 

radius of curvature  R' of the second  comparative metric of the second type is equal:  

R'= 0
11

'

1

2
>==

− ααK
 2'R =

2

1

α
>0. 

 Because { 1,0 ±≠≠ αα }, then from the equalities К'=
2α− ,  R'=

α

1
, 2'R =

2

1

α
we get the 

following reletions: 0> К' 1−≠ , 0< R' 1≠ , 0< 2'R 1≠ . 

 The second  comparative metric is realized under parameterization     

                  X’ =  
α

1
sh(α u)cos(v), Y’ =

α

1
 sh(α u)sin(v’),  Z’ =

α

1
ch(α u)   

on the pseudo-sphere M' 
2
 : Z’

2
 - X’

2
- Y’

2
 =

2

1

α
1≠ , Z’ ≥  

α

1
1≠   in the  three-dimensional 

Minkowski space (X, Y, Z), endowed with the Minkowski metric  ( ) ( ) ( ) ( )2222
dYdXdZdl −−= . 

    On the pseudo-sphere M ' 
2
 : Z’

2
 - X’

2
- Y’

2
 = 

2

1

α
  , Z’ ≥

α

1
  with the above 

parameterization of the comparative metric, we obtain the relationship: 

 

( ) ( ) ( ) =−−− ]'''[
222

dYdXdZ 2)'(ds = +2)(du
2

1

α
sh 2 ( )uα ( 2)dv . 
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 Thus, for 12 −= αρ 0> , the comparative metric of the second type has the following 

form: +2)(du
2

1

α
sh 2 ( )uα ( 2)dv { 1,0 ±≠≠ αα , u>0, +∞<<∞− v } and has another geodesic 

curvature К'=
2α− ,  than the   geodesic curvature 1−=K  of the basic Lobachevsky metric  (ds )

2
 

= (du )
2
 +sh

2
 (u) ( dv )

2
.  Two different pseudo-spheres:  Z

2
 - X

2
- Y

2
 = 1, Z ≥ 1  (for the basic 

Lobachevsky metric) and  Z’
2
 - X’

2
- Y’

2
 = 

2

1

α
, ≥'Z

2

1

α
 (for the comparative metric of the second 

type) proved to be the carrier of these two metrics. 

 Comparison of metric properties for the metrics of the first type with  {u>0, 

),( +∞−∞∈v }.  Let us show that with 12 −= αρ  >0, { 1,0 ±≠≠ αα }  the basic Lobachevsky 

metric (ds )
2
 = ( du )

2
 +sh

2
 (u) ( dv )

2
  and   the comparative metric of the first type  

2)'(ds = +22 )(duα  sh 2 ( )uα ( 2)dv   have opposite metric properties. 

    Nonisometry with  12 −= αρ  >0, { 1,0 ±≠≠ αα } for the metric of the first type.  

According to the metric table, in order that the displaying f : М
 2 
�  М'

 2  
would be isometric 

(preserved lengths), it is necessary and sufficient that the coefficients of metric forms coincide for  

parameterization of one and the same area of the plane of the parameters of these surfaces [23].  

In our situation when comparing the metric forms (ds)
2
=(du)

2
+sh

2
(u)(dv)

2 
(the Lobachevsky 

metric) and  2)'(ds = +22 )([ duα sh 2 ( )uα ( 2)dv ] (the comparative metric) at the parameterization 

of the surfaces  М
 2 

and М'
 2  

in one and the same area { +∞<<−∞+∞<< vu ,0 } of the plane of 

parameters, the following equalities  E =E', F=F', G=G' were performed. Here the coefficients of 

the metric forms have the following forms:  Е=1, F=0, G=sh
2
(u)>0 and Е'=

2α , F'=0, 

G'=sh
2
(α u) >0 with additional requirements { 1,0 ±≠≠ αα }.   

    According to the table of comparison of the metric properties [23], here and in the future, 

in order to establish isometry, conformity  and equiarity, we can directly use the comparison of the 

coefficients of the corresponding metrics on surfaces. Let us apply a general algorithm, consisting 

in the use of expansion in absolutely convergent Taylor series.  

      Non-isometry. Suppose there is isometry.  Then we get the equalities:  
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E = E' 1= 2α , 0=0, G = G'   sh
2
 (u) =sh

2
(α u) .  But for this case we get the equalities: E=E' 

1= 2α a= 1±  what contradicts to the condition 0>ρ ,{ 1,0 ±≠≠ αα }. Therefore, in this 

situation, we get the inequality: E ≠ E', that is, it is nonisometry. 

 We also show that under the condition { 1,0 ±≠≠ αα , u>0} we get also that 

G=sh
2
(u) ≠ G'=sh

2
(α u). Let’s suppose the contrary, that is, that the following equality exists: sh

2
 

(u)=sh
2
(α u), where { 1,0 ±≠≠ αα , u>0}. Then, we get: sh

2
(u)-sh

2
(α u)=0. Let’s decompose the 

function 1P = sh
2
 (u)-sh

2
(α u) in a Taylor series on the variable u with the center of decomposition 

00 =u . Then, we get:  

           1P = (1- 2α ) 2
u +( ...)1(

315

1
)1(

45

2
)1(

3

1 886644 +−+−+− uuu ααα =0. 

Because  { 1,0 ±≠≠ αα , u>0} and  1P =0,  then we can divide this series by 22)1( uα− . Then 

after all the cuts we get: 

2P =  =
− 22

1

)1( ua

P
 ...)1(

315

1
)1(

45

2
)1(

3

1 664244222 +++++++++ uuu αααααα =0                                                                                       

       All members of this series are positive and, moreover, 2P >1, what is contrary to 2P =0. But 

then under the conditions { 1,0 ±≠≠ αα , u>0} we have nonisometry (not save lengths) between 

the basic Lobachevsky metric (ds )
2
 = (du )

2
+sh

2
 (u) (dv )

2 
and the comparative metric of the first 

type  (ds')
2
 = 2α ( du )

2
 +sh

2
 (α u) ( dv ). 

 Nonconformity with 12 −= αρ  >0, { 1,0 ±≠≠ αα } for the metric of the first type.  

The conformal displaying preserves the angles between curves at its intersection points 

(preservation of angles). Let’s show that in the case of { 1,0 ±≠≠ αα }  for the case 1−= αρ >0 

there  is nonconformity.   Suppose the contrary, that is, that there is a conformal displaying  f : М
 2 

�  М'
 2  

Then, under the above conditions { ,0≠α 1±≠α },{u>0} there must be such a function  

λ0 = λ0  (u,v) > 0,  so that  E= λ0E', F = λ0F', G= λ0G'.   

 Because  Е=1, F=0, G= sh
2
 (u) >0  and  Е'=

2α , F'=0, G'=sh
2
(α u) >0 , that from the 

conditions E= λ0E', F = λ0F', G= λ0G'  we get the following equalities: 
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 1= λ0
2α ,  sh

2
 (u)= λ0 sh

2
(α u)  λ0= 2

1

α
, sh

2
 (u)= 

2

1

α
sh

2
(α u)  

 2α  sh
2
 (u)= sh

2
(α u) 1P =

2α sh
2
 (u)- sh

2
(α u) =0.    

 Let’s decompose the function 1P = 2α sh
2
 (u) - sh

2
(α u) in the Taylor series on the variable 

u with the center of the decomposition 00 =u . Then, we get:  

          1P = ...)(
14175

2
)(

315

1
)(

45

2
)(

3

1 10102882662442 +−+−+−+− uuuu αααααααα =0 

  Because { 1,0 ±≠≠ αα , u>0}, then  ( 42 αα − ) 4
u = 0)1( 422 ≠− uαα . Then, the function 

=2P
442 )(

3

uαα −
 1P  is decomposed into the Taylor series as follows:  

2P = ...)1(
4725

2
)1(

105

1
)1(

15

2
1 664244222 ++++++++++ uuua ααααα =0. 

         Because each member of this series is positive and, moreover, 2P >1, then we get a 

contradiction in the form: 0 = 2P >1 what is impossible. Thus, nonconformity with 0>ρ  for the 

condition { 1,0 ≠≠ αα } has been proved.   

 Aquirealirty  for 1−= αρ  >0, { 1,0 ≠≠ αα } for the metrics of the first type. 

Aquireal  displaying preserves the area of geometric figures.   Let’s show that in the case of 

{ 1,0 ≠≠ αα } for 12 −= αρ  there is equiarity of metrics. Suppose the contrary, that is, that 

there is an aquireal  displaying  f : М
 2 
�  М'

 2  
. Then under the above conditions 

{ ,0≠α 1±≠α },{u>0} the following equality will be performed:   E G –(F)
2
 = E'G' – (F' )2 . The 

coefficients of the basic Lobachevsky metric  (ds )
2
 = ( du )

2
 +sh

2
 (u) ( dv )

2 
  have the following  

form:  

 Е=1, F=0, G= sh
2
 (u) >0 , but the coefficients of the comparative metric  

(ds')
2
 = 2α (du )

2
 +sh

2
 (α u) ( dv )

2 
 have the form:   Е'=

2α  >0, F'=0, G'=sh
2
(α u) >0.  
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       Therefore, for this situation, the equality EG  – (F)
2
 = E'G'  – (F' )2 has the form:  sh

2
 (u) -

2α sh
2
(α u)=0 . Let’s decompose the function 1P = sh

2
(u)- 2α sh

2
(α u) into Taylor series on the 

variable  u with the center of decomposition 00 =u . Then we get:  

1P =(1- )4α 2
u + ...)1(

315

1
)1(

45

2
)1(

3

1 8106846 +−+−+− uuu ααα =0. 

 Because { 1,0 ±≠≠ αα , u>0}, then  ( 41 α− ) 2
u  0≠ . Then the function 2P  =

24)1(

1

uα−
1P  

is decomposed into Taylor series as follows: 

2P =1+ ...)
1

1
(

315

1
)1(

45

2
)

1

1
(

3

1 6

2

8642
242

2

42

+
+

++++
+++

+

++
uuu

α

αααα
α

α

αα
=0. 

        However, because every member of this series  is  positive and, moreover, 2P >1, then we get 

the following  contradiction: 0 = 2P >1, what is impossible. Thus, the nonequiarity with 0>ρ  for 

the condition { 1,0 ±≠≠ αα } has been proved. 

  So, when { 1,0 ±≠≠ αα }, { +∞<<−∞+∞<< vu ,0 } for the case 012 >−= αρ , for the 

comparison of the basic Lobachevsky metric (ds )
2
 =( du )

2
 +sh

2
 (u) ( dv )

2 
 to the metric 

(ds')
2
= 2α (du)

2
+sh

2
(α u)(dv)

2 
, there is nonisometry (the lengths are not preserved), there is 

nonconformity (the angles are not preserved) and there is nonequiarity (the areas are not 

preserved).  

 The peculiarity of this result consists in the fact that in this case the Gaussian curvatures of 

the basic Lobachevsky metric (ds )
2
 = (du )

2
 +sh

2
 (u)( dv )

2  
and the comparative metrics of the 

type (ds')
2
= 2α (du)

2
+sh

2
(α u)( dv )

2
 for the conditions { 1,0 ±≠≠ αα },  

{ +∞<<−∞+∞<< vu ,0 }, are equal, that is, K= .1' −=K    

 Comparison of metric properties for metrics of the second type with  

{u>0, ),( +∞−∞∈v }.                                 

           Let’s show that with 12 −= αρ  >0, { 1,0 ±≠≠ αα } the basic Lobachevsky metric  (ds 2  

)=( du )
2
 +sh

2
 (u) ( dv )

2
  and the  comparative metric 2)'(ds = +2)(du

2

1

α
 sh 2 ( )uα ( 2)dv  have 

opposite metric properties 



 18 

  Nonisometry at 12 −= αρ  >0, { 1,0 ±≠≠ αα } for the metrics of the second type. 

 According to the metric table, in order the displaying  f : М
 2 
�  М'

 2  
was isometric,  it is 

necessary and sufficient, so that the coefficients of the metric forms coincide, when the 

parameterization in the same area of the plane of parameters of these surfaces was realized [23]. 

In our situation when comparing metrics   (ds )
2
 = ( du )

2
 +sh

2
 (u) ( dv )

2  
(the basic Lobachevsky 

metric) and   2)'(ds = +2)(du
2

1

α
 sh 2 ( )uα ( 2)dv  (the comparative metric)  at parameterization of 

the surfaces  М
 2  

and  М'
 2  

in one and the same area { +∞<<−∞> vu ,0 } of parameters plane; this 

means that the following equalities are performed:  E = E', F= F', G = G'.   Here the coefficients of 

metric forms are the following: 

Е=1, F=0, G= sh
2
 (u) >0 и  Е'=1, F'=0, G'=

2

1

α
sh

2
(α u) >0 

with additional requirements { 1,0 ±≠≠ αα }.  Note that in this situation, the Gaussian curvature 

of the basic Lobachevsky metric is equal to ,1−=K  but the comparative metric is equal to 

К'=
2α− <0. Because { 1,0 ±≠≠ αα }, then 'KK ≠ . Recall the Gaussian theorem [23] (a 

necessary condition for the constancy of the Gaussian curvature):  

 “If isometry with the displaying (the lengths are preserved), then the Gaussian curvature 

at the corresponding points is the same”. 

  However, these conditions are necessary, but not sufficient, that is, if the Gaussian 

curvature at the corresponding points is the same, then the displayings, a priori, can be 

nonisometric. Namely, for the metrics of the first type, when { 1,0 ±≠≠ αα }, the Gaussian 

curvatures were the same ( )1' −== KK ), but there was nonisometry (not preserve the lengths) 

and, moreover, there was also nonconformal (not preserve the the angles) and aquireal (not 

preserve the areas).  If at the corresponding points the Gaussian curvatures do not coincide, then 

there is certainly nonisometry, because, for example, in this case ,1−=K  К'=
2α− , 'KK ≠ , 

where { }1,0 ±≠≠ αα . Therefore, in this situation, from the Gaussian theorem on isometry for the 

conditions Е=1, F=0, G= sh
2
 (u) >0 и  Е'=1, F'=0, G'=

2

1

α
sh

2
(α u) we get, that because Е= 

Е'=1, F= F'=0, but we have nonisometry, then there follows the following result:  G= sh
2
 (u) ≠  

G'=
2

1

α
sh

2
(α u).   
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     Nonconformity with 12 −= αρ  >0, { 1,0 ±≠≠ αα } for the metrics of the second type.   

Suppose the contrary, that is, there is the conformal displaying  f : М
 2 
�  М'

 2 
. Then under the 

above conditions { ,0≠α 1±≠α , +∞<<−∞> vu ,0 }, when we compare the basic Lobachevsky 

metric (ds )
2
 = ( du )

2
 +sh

2
 (u) ( dv )

2  
with any fixed comparative metric 2)'(ds = +2)(du

2

1

α
 

sh 2 ( )uα ( 2)dv  there must be a such function  λ0 = λ0  (u,v) > 0,  so that   E= λ0E', F = λ0F', G= λ0G'.     

 Because   Е=1, F=0, G= sh
2
 (u) >0 and  Е'=1, F'=0, G'=

2

1

α
sh

2
(α u) >0 , then, from the 

conditions   E= λ0 E', F = λ0 F', G= λ0 G'  we get the following equalities: 

1= λ0 ,  sh
2
 (u)= λ0 2

1

α
 sh

2
(α u)   sh

2
 (u)

2

1

α
−  sh

2
(α u) =0 2α sh

2
 (u)-sh

2
(α u)=0.   

 Next, apply the same algorithm for the Taylor expansion of the function 1P = 2α sh
2
 (u)- 

sh
2
(α u) and divide this series by the first coefficient; then, for this case we get that this series is 

greater than zero, but on the other hand, this series is zero what is impossible. Therefore, in this 

situation there is also nonconformity. 

       Nonaquirealirty   with 12 −= αρ  >0, { 1,0 ±≠≠ αα } for the metrics of the second 

type.  The aquireal  displaying preserves the areas of the corresponding geometric figures. 

Suppose the contrary, that is, that there is an aquireal displaying  f : М
 2 
�  М' . Then, under the 

above conditions { ,0≠α ,1±≠α +∞<<−∞> vu ,0 }, according to [23] (a table of comparison of 

metric properties), for aquirealirty  it is necessary and sufficient that when comparing the 

corresponding coefficients of metric forms satisfy to the equality: EG  – (F)
2
 = E'G'  – (F' )2

.  In our 

situation { ,0≠α 1±≠α , +∞<<−∞> vu ,0 } by assuming aquirealirty between the basic 

Lobachevsky metric  (ds )
2
 = ( du )

2
 +sh

2
 (u) ( dv )

2  
and the  comparative metric   

2)'(ds = +2)(du
2

1

α
 sh 2 ( )uα ( 2)dv  it is necessary and sufficient so that the following equality is 

performed: EG – (F)
2
 = E'G' – (F' )

2. Here we have:   Е=1,  F=0, G= sh
2
 (u) >0 , Е'=1, F'=0,  

G'=
2

1

α
sh

2
(α u) >0. But then we get: 

E G  – (F)
2
 = E'G'  – (F' )2    sh

2
 (u)= 

2

1

α
sh

2
(α u)   2α sh

2
 (u)-  sh

2
(α u)=0. 
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This situation 2α sh
2
(u) - sh

2
(α u)=0  met, when proving nonconformity with   12 −= αρ  >0,  

{ 1,0 ±≠≠ αα } for the metrics of the first type. It has been shown that this situation is 

impossible. Therefore, we obtain that there follows from comparisons of the metrics  

(ds )
2
 = ( du )

2
 +sh

2
 (u) ( dv ) and  2)'(ds = +2)(du

2

1

α
 sh 2 ( )uα ( 2)dv  

that the metrics are nonaquireal (the areas are not preserved) for the case {u>0, )},( +∞−∞∈v . 

Therefore, when comparing the second type of the comparative metrics to the basic Lobachevsky 

metrix, we get nonisometry, nonconformity and nonaquireality. 

 

     The third type of metrics comparison for the case { u>0, ),( +∞−∞∈v } 

      2

1)(ds = +22 )(duα  sh 2 ( )uα ( 2)dv (Gaussian curvature )11 −=K , 

      2

2)(ds = +22 )(duβ sh
2
 ( β u) ( dv )

2
 (Gaussian curvature 12 −=K )  

for the conditions { 22 βα ≠ , 1,0 ±≠≠ αα , 1,0 ±≠≠ ββ ,u>0,  ),( +∞−∞∈v }.   

  Representation of the third type of metrics comparison in terms of hyperbolic   

Fibonacci λ -functions. Let’s assume that  

=α ln( λΦ ) 2=⇔ λ sh )(α , β =ln( µΦ ) 2=⇔ µ sh )(β  for the conditions 

22 βα ≠ , 1,0 ±≠≠ αα , 1,0 ±≠≠ ββ ,u>0,  ),( +∞−∞∈v } ⇔   

{ln
2
 ( λΦ ) ≠ ln( µΦ ), 3504.2,0 ±≠≠ λλ , 3504.2,0 ±≠≠ µµ , u>0,  ),( +∞−∞∈v }.  

 Then, we get the two metrics, the first comparative metric 

  2

1)(ds =ln
2
 ( λΦ ) +2)(du sh

2
[u• ln( λΦ )] ( 2)dv =ln

2
 ( λΦ ) +2)(du

4

4 2λ+
 )(2

usFλ  ( 2)dv   (Gaussian 

curvature 11 −=K ), and the second comparative metric 

 2

2)(ds =ln
2
 ( µΦ ) +2)(du sh

2
[u• ln( µΦ )] ( 2)dv =ln

2
 ( µΦ ) +2)(du

4

4 2µ+
)(2

usFµ  ( 2)dv   
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(Gaussian curvature 12 −=K ). 

 The fours type of metrics comparison for the case { u>0, ),( +∞−∞∈v }                                                 

  2

1)(ds = +2)(du
2

1

α
sh 2 ( )uα ( 2)dv  (Gaussian curvature 02

1 <−= αK )           

2

2)(ds = +2)(du
2

1

β
sh 2 ( )uβ ( 2)dv  (Gaussian curvature 02

2 <−= βK )  

for  the conditions  { 22 βα ≠ , 1,0 ±≠≠ αα , 1,0 ±≠≠ ββ ,u>0,  ),( +∞−∞∈v }.   

 Representation of the fourth kind of comparison of metrics in terms of hyperbolic 

Fibonacci λ -functions. Let’s assume that  

  =α ln( λΦ ) 2=⇔ λ sh )(α , β =ln( µΦ ) 2=⇔ µ sh )(β  for the conditions 

{ 22 βα ≠ , 1,0 ±≠≠ αα , 1,0 ±≠≠ ββ ,u>0,  ),( +∞−∞∈v } ⇔   

{ln
2
 ( λΦ ) ≠ ln( µΦ ), 3504.2,0 ±≠≠ λλ , 3504.2,0 ±≠≠ µµ , u>0,  ),( +∞−∞∈v } 

 Then, we get the two metrics, which are expressed through the Spinadel’s metallic 

proportions λΦ  and µΦ : 

 2

1)(ds = +2)(du
)(ln

1
2

λΦ
sh 2 [u• ln( λΦ )] ( 2)dv = +2)(du

)(ln

4
22

2

λ

λ

Φ

+
)(2

usFλ  ( 2)dv    

(Gaussian curvature 0)(ln2

1 <Φ−= λK ), 

and 2

2)(ds = +2)(du
)(ln

1
2

µΦ
sh 2 [u• ln( µΦ )] ( 2)dv = +2)(du

)(ln

4
22

2

µ

µ

Φ

+
)(2

usFµ  ( 2)dv  

(Gaussian curvature 0)(ln2

2 <Φ−= µK ), where 12 KK ≠ . 

 Both types of these comparisons for the comparative metrics themselves on the subject of 

nonisometry, nonconformity and nonaquireality are conducted in a similar way (with a slight 

modification) by using the general algorithm for decomposition into Taylor series. In these last two 

cases, the function, taken as the distance between the comparative metrics is 22),( βαβαρ −= .  

 In terms of the Mathematics of Harmony [1] after the replacements  
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=α ln ( λΦ ), =β  ln ( µΦ ), the distance  between the comparative metrics looks like 

)(ln)(ln),( 22

µλµλρ Φ−Φ= . For the case µλ ±=  we get:  

)(ln)(ln),( 22

µλµλρ Φ−Φ=  =0 .  

6. New Challenge for Theoretical Natural Sciences: Insolvability of the 4-th 

Hilbert Problem  

Theorem 2 (Complete solution of the Fourth Hilbert Problem for hyperbolic geometries).  The 

Fourth Hilbert's Problem is insoluble for hyperbolic geometries. 

Proof:  

 Note that taking into consideration the above arguments, the authors’ solution of the 4-th 

Hilbert Problem, which is described in [24], can be considered not only as variant of the 

particular solution of this problem (the first approach), but also as  the complete solution of the 4-

th Hilbert Problem (the second approach), unlike of the particular solutions of Hamel, Pogorelov 

and others researchers. Namely, the authors of this article proved the existence of an infinite 

number of new hyperbolic geometries, arbitrarily near to Lobachevsky's geometry, but having 

other metric properties in comparison with Lobachevsky's geometry (nonisometry, nonconformity, 

nonaquireality ). The authors used one and the same general algorithm for comparison these 

metrics to find their metric properties. This algorithm allows the comparison of  the comparative 

metrics to the Lobachevsky metric and the comparative metrics among themselves; this algorithm 

is based on the decomposition of the remainders between metrics into absolutely convergent 

Taylor series. If such remainders after division on the first term have constant signs, then the 

corresponding metric properties do not match. If in such series, after division on the first term, we 

get alternating variables, then by using this general algorithm it is impossible to establish directly, 

whether the corresponding metric properties of the compared metrics are coincident or differ. To 

do this, we always need to search for specific ways and algorithms. 
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 But because the set of geometries, near to Lobachevsky’s geometry, is infinite, we 

certainly come to the conclusion, that for an infinite set of geometries, near to Lobachevsky’s 

geometry, it is impossible to find one and the same general algorithm, which makes possible for 

any metrics from this infinite set to define to have or don’t have other metric properties than the 

metric properties of Lobachevsky’s geometry or to draw a similar conclusion after comparison of 

the metrics to each other. This set of metrics can be used for comparison of the metric properties 

of both metrics with the same Gaussian curvature and metrics with different Gaussian curvatures. 

 In particular, this set contains all metrics with different Gaussian curvatures. When 

comparing any two such metrics of the form  222 )(2)()( dvGFdudvduEds ++=  (there are an 

infinite set of such metrics), if we apply a general algorithm for comparison of such metrics and 

we get the sign-alternating Taylor power series and therefore this general comparison method 

does not fit. 

 On the other hand, when we compare such metrics, the Gauss theorem is partially (but 

incomplete) applicable: if two such metrics have different Gaussian curvatures, then there is 

nonisometry. But it does not at all follow from this that there is no possible conformity and 

aquireality. In order to establish the presence or absence of conformity and aquireality, it is 

necessary in this situation to search for a specific method every time. 

  This, in any sense, is analogous to the fact that in a binary graph the set of all vertices is 

countable, and the set of all paths is countable (the power of the continuum).  

 Such an approach is in some sense similar to the proof of the insolvability of the 10-th 

Hilbert problem (is there a universal algorithm for solving arbitrary Diophantine equations), made 

by the Russian mathematician Yuri Matiyasevich in 1970. Recall that the basic idea of the proof 

of the insolvability of the 10-th Hilbert Problem consisted in the fact that since the set of all 

Diophantine equations is uncountable and then, according to the main Matiyasevich theorem, “the 
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same general method (algorithm) is impossible, which allows for any Diophantine equations 

determining, whether they have a solution in integers or not. " 

      That is why, the authors recommend to the readers to pay attention to the importance of 

the article [24], in which the particular solution of the 4-th Hilbert Problem, based on the 

Mathematics of Harmony [1], was called the MILLENIUM  PROBLEM  in geometry.  

Conclusions 

              The particular solution of the 4-th Hilbert Problem is obtained; it is based on the 

hyperbolic Fibonacci λ -functions. The originality of this solution consists in the following: 

      1). This particular solution is based on the Lobachevsky metric, whose Gaussian curvature is 

equal to 1−=K ; this Lobachevsky metric is isometric to the classical Lobachevsky metric with 

the Gaussian curvature 1−=K .      

        2). Two types of infinite set of the comparative metrics, based on hyperbolic Fibonacci λ -

functions, are considered. These metrics can be arbitrarily near to the basic Lobachevsky metric 

and in the limit they coincide with the basic Lobachevsky metric.  

 The first type of all these comparative metrics has Gaussian curvature 1−=K , the same 

with the basic Lobachevsky metric. However, all these comparative metrics with respect to the 

basic Lobachevsky metric are nonisometric (do not preserve lengths), nonconformal (do not 

preserve angles), nonaquireal (do not preserve areas). Moreover, these comparative metrics 

themselves are also nonisometric, nonconformal and nonaquireal. This particular solution is 

based on the Lobachevsky metric, whose Gaussian curvature is equal to 1−=K ; this 

Lobachevsky metric is isometric to the classical Lobachevsky metric with the Gaussian curvature 

1−=K .      

      Thus, the important conclusion of this study is proving the existence of an infinite set of 

new geometries, arbitrarily near to Lobachevsky's geometry and having the same with 

Lobachevsky's geometry negative Gaussian curvature K= .1−   
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   The second type of all these comparative metrics has negative Gaussian curvatures 

)0)(ln)( 2 <Φ−= λλK , which differ from the Gaussian curvature 1−=K  of the basic 

Lobachevsky metric. In relation to the basic Lobachevsky metric, all these comparative metrics are 

nonisometric (do not preserve lengths), nonconformal (do not preserve angles), nonaquireal  (do 

not preserve areas). 

 Moreover, these comparative metrics themselves are also nonisometric, nonconformal and 

nonaquireal. In process of study, the authors of this article found metrics that clarify the Gauss 

theorem about the intrinsic geometry of surfaces, that for displaying, that preserve length 

(isometry), the Gaussian curvature remains the same. 

 It follows from the Gauss theorem that if two metrics, when compared, have different 

Gaussian curvatures, then, they are nonisometric. It follows from our study (for some particular 

situations) a revision of the Gauss theorem, that for any pairs of metrics, presented in the second 

type of specific metrics, not only between the comparative metrics and the basic Lobachevsky’s 

metric, but also between specific metrics there exist not only nonisometry (according to the 

corollary to the Gauss theorem), but also nonconformity and nonaquireality. 

 Thus, it is proved the existence of an infinite number of new geometries (nonisometric, 

nonconformal, nonaquireal  each other) with different negative Gaussian curvature; these 

geometries are arbitrarily near to the Lobachevsky hyperbolic geometry, they have other negative 

Gaussian curvature and are in comparison to Lobchevsky geometry such properties as 

nonisometry, nonconformity and nonaquireality 

       3) But the main result of this article is obtaining the complete solution of the 4-th Hilbert 

Problem for hyperbolic geometries; the essence of this result is the following: 

 The 4-th Hilbert Problem is insoluble for hyperbolic geometries. 

 4) In the book “The «Golden» Non-Euclidean Geometry. Hilbert’s Fourth Problem, 

«Golden» Dynamical Systems, and the Fine-Structure Constant” [14] the authors investigated 

particular solutions to the 4th Hilbert Problem not only for the case of Lobachevsky hyperbolic 
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geometry, but also for the wider class of non-Euclidean geometries (Riemannian geometry 

(elliptic geometry), non-Archimedean geometry, and Minkowski geometry). Developing the 

approach, outlined in this article, in connection with the above classes of non-Euclidean 

geometry, the authors came to the hypothesis that the fundamental mathematical result, proved 

in this article (insolubility of the 4th Hilbert problem for hyperbolic geometries), possibly is 

valid for all types of non-Euclidean geometries what however, requires strict proof. 
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