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Abstract

It is shown that even for such non-linear system, as the mathematical (simple)
pendulum (MP) [1,2], known more than 350 years, it is possible to receive by means
of the method of sized scaling (SS) a row of new nontrivial results. In the SS
method along with well-known scale for the oscillation frequency M, =\fg/_L(g IS
the free fall acceleration, L is the MP length) may be introduced, entering from a
basic scales My=V/L (V is the bob speed in the lower point of a path) and
M, =g/L, My=\/M;-M_;, and then as there geometric averages the infinite set
of other scales. At the same time, using parameters K and K=1/x« in the elliptic
functions and integrals (k> =V?/4gL is equal to the relation of the kinetic energy
of the MP bob in the lower point of a path to the maximum potential energy in the
upper point), it is possible to describe the dynamics both of the oscillating and
rotating MP in spite of the fact that it is topologically different movements. It is
essential also that for the MP it is found a number of exact and interesting ratios
which are expressed through the gold ratio constants ¢=(-1++/5)/2 and
®=(1++/5)/2. Besides, it is shown that basic scales can form the so-called Kepler’s
and meta-triangles found, in particular, in geometry of the Great Pyramid of Cheops.

The MP (also called the simple pendulum) is a system consisting of a rod of
length L and of negligible mass or a string, which also is assumed to be massless and
unstrechable, and a point mass M, attached to the rod or string and called the
pendulum bob. The rod or string is attached to a pivot which is the point to swing

from.



The forces acting on the bob are the tension in the string F and the gravitational

force P=mg.When the bob is displaced and released the tangential component of P

produces a restoring force, which always acts in the direction opposite to the
displacement of the bob. As a result the bob oscillates. However oscillations are not
iIsochronous and only at very small initial deflection angles of a rod or string from a

vertical (g =0) the oscilation period T practically does not depend on oscillation

amplitude: T:ZTC\/Fg-(1+(p%/16+11-(p6‘/3072+---):2n\m (g - is the
free fall acceleration).

The dependence of the period of the MP on the free fall acceleration forms the
basis of a very accurate method for determining this acceleration. This method is

widely used in practice.

In this article a row of new nontrivial pequliarities in the dynamics of the
oscillating and rotating mathematical MP is set with the help of the method of the
sized scaling (SS), which was offered by us in [3,4].

Assuming that the expression for the MP oscillation frequency ®w=2r/T
depends on 3 possible parameters @—g*-LB-V"-m? (V is the bob speed in the
lower point of a path) we receive the equation for determination of 3 (!) indexes
o, 3,7 through 2 (!) values (units of time T and lengths L, [\/]:L-T_l):
TA=1%. T2 B.Y.T. Mass of the bob is not included into this equation

(m6 :mo) since all bodies have the same gravitational acceleration.
From this equation it follows that there is an infinite number of combinations of

indexes determined by expressions a.=(1—v)/2, B=(-1—-7y)/2,—co<y<+o0. The
values of indexes a, [3, v lie in the plane 1-a+1-B+1-y=0.
Thus, along with the well-known scale of the MP oscillation and rotation

frequencies My=,/g/L (y=0) exists infinitely large number of other scales
I\/IY:(ZK)Y«/g/L(K2=V2/4gL is the relation of the bob kinetic energy in the

lower point of a path mV2 /2 to the maximum potential energy 2mgL in the upper
2



point), y- any number. So, in case of Y=0 we receive “usual” scale My=./g/L, in
case of y==1 the basic scales My=V/L, M_=g/V from 2 parameters, in case

of y=+1/2, £1/3 the scales from 3 parameters I\/h/Z:\Mg/L (V/,
M.y, =Ja/L-@/V), Myz=3@7D)-(V7D), My3=3@/D-@7V).

It is essential that both the geometric averages from 2 symmetric scales

JI\/I_Y-I\/IY =M, and the generalized geometric averages from 2n+1 symmetric

scales 2”+\J/1_l:jnl\/li =M, are equal to scale My =,/g/L.

From the conservation law of a total energy for the conservative system — the MP

2 2
L (dq;/ )

it follows that the period of oscillations of the MP is defined by expression:

+mgL{1-cose)=E (1)

Tos=4 29 0 \ICOS(P oSy \/7j J1- 18 sinZ0 \/; @

@- angle of deflection of the rod (string) from vertical, SiIN6=sin(¢p/ 2) /sin(¢y/ 2),

K2 =sin?(go/2) =V2/4gl, K()=[""d0/\1+Csin?0 s the 1st kind full

elliptic integral.
At 0<k<l1 for approximation of K(x) integral the following power series are

used [5-7]:

(Zn 1) ]2 K2n} (3)

K(K)=J-:2\/]T L 1+§112 >

At K ~1 we used another approximation of K(k) integral:

K(i) = A+—1<2+ (A —) 1+ (A——)K1-|- (4),

where A=In(4/1q), 1g=V1-«°.



From the law of conservation of energy for the rotating MP:
mv2(¢) / 2=m(Ldop/ dt)2/ 2 =mV/2/ 2—mglL(L—cos ¢) 5)

it follows that the period of rotation is defined by expression:

K(k) (6)

52L f
T
kT 0 V1- k25|n 9
where 9=¢/2, k?=mg2L/(mV?/2)=4gL/V?=1/+.
Proceeding from (2), (6), it is possible to show that the frequencies in different

scales are defined by the following expressions for the oscillating and rotating MP:
@05 =(1/ 2) (2 TK™ (1) (7)
oy rr =1/ 2) (2 TKH(L ) (8)

In the case of the inversion of parameters k<>1/ik the elliptic functions for

the oscillating MP  K(x) are replaced with the functions for the rotating MP

K(k=1/x) and vice versa. In this regard it should be pointed out, for example, that

at inversion k<>1/x in the scale My, :\Mg/L-(\// L) which is geometric

average for the scales My =,/g/Land M, =V/L corresponding accordingly to the

oscillating and to rotating movements the rotation frequency is exactly twice more

larger than the oscillation frequency: gt =200 (see fig. 1).
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Fig.1. Calculated dependences of the MP oscillation and rotation frequencies
ps0s(k) =(1/ 2)(2) V2KH() and - apsrr(i) =(n/ 2) (26> KL/ 1) at
v=1/2 (curves 1 (0<k<1), 2 (1<x) respectively), aysrr(d/ K)/ aps05(K) =2.



This symmetry takes place and in the MP equations of motion:

Vos(t) =(Ldo/ d) s =V-cn(t-Jg7L, 1), 0<i<l 9),
Vir () = (Ldkp/ db)gr = V-dn(t-V/2Lk),  1<i<oo (10)

At inversion of parameters K<>1/x the elliptic function cn for the oscillating

MP are replaced with dn function for the rotating MP and vice versa.

At the same time elliptic functions: cosine - Cn and sine - SN are defined
as follows. According to (2) dimensionless time T of the bob movement from

vertical position to the deviation angle 0 it is equal:
t=t-Jg/ L:fgdel»\/l—%sin% (11)

The upper limit in this integral 0 is the inverse function of this integral and is

called “amplitude” and designated as O=am(t, ) .
Functions  sin(am(t, ) =sn(t,x), cos(am(t,k?)=cn(t,k) are called the

elliptic sine and cosine, SN?(t)+cn?(t)=1, sn(=t)=-sn(v), on(-t)=cn().

Their main periods are 4K and 2K"i, where K'=K(K), k'=v1-k?, i=J-1
[6-7]

The elliptic function dn is defined as dn(,K) :Jl—kzsnz(r, K) and has the
main periods 2K(K), 2K'i [6-7].

From definitions of the elliptic functions it can be found the following

transformations at parameters inversion (k<>1/x): sn(t,l/K)=Kk-sn(t/K),
cn(tl/k)=dn(t,1/K), dn(tl/K)=cn(t/kK). And, respectivelym at this
transformations the scale \/g/ L for time changeson Jg/L/k=V/2L.

For the movement on a separatrix (1(2 =k? =1) equation (1) has exact solutions:



do/dt=+2./g7L-cos(p/ 2) =+2,/g/ L/ ch(\Jg/L 1) (12),
p=2-arcsin(th(\/g/ L -t)) =4-arctg(exp(\Jg/L -t)) —n (13)

It is found that the dependences O)Y(KZ) can be or the monotonic, or having a

maximum in the field of oscillations (OSK2 <1) or in the field of rotation

(1SK2 <00). At the same time all dependences COY(K) are crossed in one point in

case of any vy (see fig.2): ®,(x=0,5)/2r~01483-1/ (O+D)(P° + D7) .
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Fig. 2. Calculated dependences of the MP oscillation and rotation frequencies

®,0s(K) and @,gr(K) at various values of parameter y: y=0(scale \g/L), y=1
(scale V/L). y=—1(scale g/V)-curves 1, 2, 3. 4,5, 6 respectively.

It is established that the maximum in dependences , (k) takes place at y<O0.

For the curve 3 in fig. 2 ®_105() e / 2T =00 105(0,83746) / 21t ~ (9 + D)2 11

At the same time Kagy —0,70134 —/3®/ 4. Accounting that 1® =V? /4gL, we
can find that the optimal MP length Loy for scale M;=g/L, at which the



dependence @, (k) is the most flat, is equal Ly ~V?[3dg=V?/1+D'g.

The existence of a maximum in dependence Q)Y(K) for the scales having V in

denominator (y<0) it is possible to explain as follows. At small i (small V) the

scale I\/lY Is great. With increase of K the frequencies in the beginning grow because
of decrease of scale I\/IY However at further increase of K effects sharp decrease of
K‘l(KZ), that is caused by the fact that at larger V' the oscillating bob gets to the

area of angles @~180° at which movement becomes very slow and o, (k=1)~0
(period TY(KIJ.) —00). This reasons explain also that for the scales having V in
numerator (y>0) with the increase of K> takes place the monotonic decrease of

, (i) (curve 2in fig. 2).

It is important that the maximum in dependences @, (k) at y<0 is minimum

at 7=0,203643~ (p+D)/11=(¢p+D)/ (P> —¢°) ~0,203278 and at the same time

coincides with a cross point of all schedules (!) at K =1/4 (see fig. 3).
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Fig. 3 Calculated dependences of the MP oscillation frequencies (k) at
v=—0,01, y=—-0,203643790, y=—0,90 (curves 1, 2, 3 — respectively).



In this case @, () / 2yey =0 9036(0,9) / 21~ 0,1483 =1/ (O0+D)(¢> + D7),
1 :1/4:V2/4gL0pt and, therefore, the optimal length is Loy =\V?/g !

Itis found that at > =1/4 geometric averages /M_Y-I\/IY and ,foa_y-(oy are
equal to their arithmetic averages (M_,+M,)/2 and (w_,+®)/2 asa result
all scales at k% =1/4 become equal.

Corresponding to equality of scales at 2 =1/4 in this case the angle of the
maximal deviation of the MP string (or rod) (@, =n/3=n/ ((I)2 +CI)2), at the same
time the MP in any scale (—00 <"y <+00) gives the same results !

Let's compare to scales I\/ly, Mo, I\/I_ythe line segments entered in a semicircle as

it is shown in fig. 4. At change i the line segment CD moves on the diameter

ABand at «?=1/4 bisects AB and at this time M, =M, =M_,.

C

Fig. 4

At > =1/4 angles A Biin fig. 1 are equal 7t/ 4 for any scales. At the same
time when passing value k=1/2 it can be sharp change of angles A, B from 0 to
7/ 2 or from 1/ 2 to 0. The corresponding dependences ZA(k), /B(k) are shown
in fig. 5 for y==+0,2, £1, £12 (curves 1-6 respectively).
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Thus, at k=1/2 in the MP it can be the effect of “bistability of scales”: the ratio
M., M, changes on inverse M, M., .

Accounting that M, =(2)"g/L, M_, =(x) g/, My=Jg/L we
receive that in fig. 4 ZA=arctg(2k)™", /B=arctg(2k)" =n/2—-LA. In case y=1

M =2« /g/L=V/L, M;=@/2)Jg/L=g/V (x=V/2gL).

In [8] a certain abstract rectangular triangle ,ABC with the sides AB=c,
AC=Db, BC=a (see fig. 4) is called Kepler's triangle, if lengths a,b,C form a
geometrical progression. If CD=h is the perpendicular to the hypotenuse AB,
AD=e, BD=d, then in Keplers triangle h=+d-e, a=c-d, b=ic-e,
h-c=a-b, h?=a2+b~.

In [9] the rectangular triangle is called a meta-triangle if, along with the
Pythagorean theorem a2 +b?=c?, the ratio a-b=c is executed.

In [8] it is supposed that the meta-triangle is a special case of the Kepler’s
triangle, in [9], on the contrary, it is supposed that the Kepler's triangle is a special

case of a meta-triangle.



These two types of triangles have been found earlier in our work [4] without
using the ambitious names. In this article we will give for these triangles concrete

physical sense according to designations in fig. 4.
Assuming that y=1, h=M,=./g/L =1, we will consider four important cases

of relations between the pieces AD and BD. As a result we will receive a number of

interesting geometrical and physical relationships.

1.AD/BD=M,/ M =(2x)> =V?/ gL =¢?. From the energy conservation law
mV2 / 2=mgL(1—cose,;) we will receive that the angle of maximum deviation of
the MP string (or rod) ¢y =arccos(l—4?/2)=m/5=n/(p+D)?. At the same time
AD=M =, BD=M,=0, CD=My=1, AC={?+1, BC=Va2+l,
/A=arctg®~58,282525589°, /B=arctgdp~31,717474411°.

It is interesting that in this case “der wurf” (german - throw) for the pieces
AD=e, CD=h, BD=d is eqjal to the ideal value @ /2=¢+1/2 [10]:

_(e+h)(h+d)
Y =" rhrd)

But this ,ABCis not Kepler's triangle and at the same time it is meta-triangle (!):

c/a=(p+D)/ VAP +1=a/ b=@P +1/|¢?+1,
a-b=v1+d7? - 1-+¢? =C=+D

—@?/2-13090169%4

1. 2. AD/BD=M,/M_;=(2)>=V?/gL=d". In a similar manner we will
receive @y =arccos(l—@? / 2) =3n/5=n(¢? + %)/ (9+D)?, AD=M, =D,

2. BD=M,=¢, CD=M,=1, AC=\J&?+1, BC=/¢?+1, A=arctgo,

3. B=arctg®, Wy =D?/2.

This JABC is also not Kepler's triangle, but it is also meta-triangle as

c/ b=(¢+D) /D +1b/a=\dP+1/ J$?+1,
a-b=\1-+¢? V1+d? =c=¢p+P

10



4, 3. AD/BD=M /M ;=(2x)>=V?/gL=¢. Also as in variant 1 we will
receive  that @y =arccos(l—¢/2) ~0,807 483293 - D/ 2 «»46,292 025 263°,
AD=M,=/p, BD=M_,=J®, CD=M,=1, AC=1+¢, BC=0,

5. ZA=arctg(V®) =51,827 292373, /B=arctg,/p=38,172707627°,

(/o +)(L+VD) 1
6. Wy = S oL B, “1+ 1+\/_+J__1326992830¢CI)2/2

7. But this ,ABC is simultaneously the Kepler's and meta-triangle (!!) as
c/a=(/p+V/D)/ D=a/b=D/ A+¢=P =1,272019650,
a-b=®-@:0=\/$+@:2,058171027

4. AD/BD=M, /M ;=(2)*=V?/gL=®D. Also as in variant 3 we will
receive that @y =arccos(l—d/ 2) ~1,378532839 ~1+¢? «>78,989843166°,
AD=M,=J/®, BD=M,=./p, CD=M,=1, AC=D, BC=/1+9,
/A=arctg\[p=38172707627°, /B=arctg(N'®) ~51,827 292373°,

(o +1)(1+«/6) 1
Ve = 1 (Jo+1+JD) 1+\/_+

8. But this ,ABC is also simultaneously the Kepler's and meta-triangle (!!) as
c/b=(o+/D)/ D=b/a=®/ [T+¢ = ~1,272019650,
a-b=J0 - ®=c=,[p+/D ~2,058171027

~1,326992830= @/ 2
NG =1,

In the completion it must be pointed out some other interesting relations, which
were received in the MP dynamics from physical reasons and which are revealed a
new results in the golden ratio geometry and trigonometry. The omnipresence of the

golden ratio constants ¢, @ is caused, in particular, by the fact that any integral
number can be precisely expressed through their combinations, including the
symmetric. For example, 1=¢-®, 2=¢-D+D-¢, 3=¢?+d?, 4=D>—¢°,
5=(p+D)?, 7=¢*+D* 11=°—¢° and soon.
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The relation of the components of the bob impulse P on the vertical and
horizontal axes ‘py/px‘:tg((p):(l)z, O, \/d_), J®, @, @7 are realized accordingly at
following angles ( of the bob deviation from a vertical:

@y (¢°) =arctg(¢’) =arcoos(——— \/—CDZ) =098,  ¢°)=n-¢(¢")

¢+

¢ () =arctg(¢) =ar0008( Jq%lj =3L717°, @) =n—@(9)

@1 V0) =arctg(§) =arceos((§) =B17F, () =n— ()
@1V ) =arctg(/D) =arccos(9) 51827, (VD) =11—y (VD)

(pl(CD):arctgd):arccos[ %)]258,2830, P,(VD) =n—@,(ND)

2
(pl(CDZ):arctgd)z:arccos[ﬁ]z%,ZSSO, (D7) =n—@y(D?)

It is important that the relative sum and difference of the potential energies of the

bob at these angles Uy (qy), U (), normalized on U, =2mgL, are equal:
[U() +Un(92) ]/ U =1 —008 1) +(1-005 )]/ 2=1,
[(Ua(2) —Ui(D)]/ Upex =008(cpr) =—008(¢py)
The angle of maximum deflection @y, 0f the MP rod (or string) is equal
Prrex () =ACC0S(1—2K%), () =Tt

At the same time the angle of deflection ¢, at which the component of

gravitational force along the MP rod (or string) is equal to centripetal force and,
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therefore, the tension of the rod (or string) is equal to zero is determined by the

expressions:
() =arccos[2(1-21%) /3],
1/ 2<@g(1K%) <@y (% =1) =arctg[{(p+1/ 2)] = 2,300524 «<»131,810315°,
(2 =1/ 2+39/ 4) ~ 2,237 035 «>128, 172 707°,

tofy (K =1/ 2+ 39/ )] =—~/D, cos[y(2 =1/ 2+3p/ 4)]=—0,

@ (2 =1/ 2+3/d / 4o+ D) =arcty(—D) ~ 2,124 371<>121, 717 474°,

cos[qy (2 =1/ 2+3/$/ 4§+ D)= /&7 b+ D) ~0,525651

In the case when the bob is suspended on the string, the bob, after passing
the angle ¢y, moves not on a circle any more, but on a parabola as the body moving

in a uniform gravitational field.

For the MP it is possible to find many other interesting relationships which are

also precisely expressed through constants ¢, .

For example, if the point of suspension of the MP string be shifted with velocity

Vo in the horizontal direction when the MP is on a platform in a moving object. In

the reference system connected with this object, the bob will begin to move on a
circle. According to the Newton's second law and the energy conservation law for the

top point of a trajectory A we will receive
myg+Fa=mva/2, mv3/2=2mgL+nmva

where Fy is the string tension at the point A. Proceeding from the condition
Fr=m(v3—4gL)/L-mg>0

we will receive that minimum speed of the movement of the suspension point O at

13



which the bob will begin to move on a circle, is equal Von =59L =(d+D)?gL.

Similarly proceeding from the Newton’s second law and the energy conservation

law for the string deviation by 90° degrees at the point B
Fe=mv3/L, mva/2=mv3/2+mgL,

we will receive that the string (or rod) tension in the horizontal position Fg is also

symmetrically and beautifully expressed through the constants of the golden ratio:
Rz =3mg =(¢° + @) mg.

Thus, by means of the MP it is possible to register not only the accelerations, but

also the speeds of movement.

At last, we will return to fig. 4. ,ABC in variant 3 is a half of the frontal section
of pyramid of Cheops [11,12] - AABA, which is formed at a mirror reflection of
AABC from the side AB. Therefore, if to use the scale in which a unit of length is
CD=h=1 then all ratios received in variant 3 will be satisfied also for the pyramid of
Cheops, i.e. a half of its frontal section will be simultaneously both the Kepler's and
the meta-triangle. In other scales when CD=h =1, the condition of existence of the

meta-triangle a-b=c is not satisfied.

According to [11,12] for the pyramid of Cheops the condition of receiving the
ideal wurf is satisfied for 3 pieces of the JABA'- the height of pyramid H=BC=®,
the radiuses of the circle Is=¢ and the radius of the semi-circle Isg=CD=h=1,

entered in the JABA' : WSrSSH:®2/2. At the same time H=I5+Ig

Let's emphasize that the very important criterion of the nonrandomness of
existence of the specified regularities for the Pyramid of Cheops are, firstly, the fact
that exactly at H=®d the function Ar(H)=r(H)—Is(H) has the extremum

(maximum), and, secondly, the function 2r(H)—H=rgs(H)+15(H)—H changes a
sign and passes through zero.
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