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Abstract 

       It is shown that even for such non-linear system, as the mathematical (simple) 

pendulum (MP) [1,2], known more than 350 years, it is possible to receive by means 

of the method of sized scaling (SS) a row of new nontrivial  results.  In  the  SS 

method  along with well-known scale for the oscillation frequency 0M g/ L (g is 

the free fall acceleration,  L is the MP length) may be  introduced, entering from a 

basic scales 1M V/ L  (V is the bob speed in the lower point of a path) and 

1M g/L  , 0 1 1M M M  ,  and then as there geometric averages the infinite set 

of other scales.  At the same time, using parameters  and k 1/  in the elliptic 

functions and integrals (
2 2V / 4gL    is equal to the relation of the kinetic energy 

of the MP bob in the lower point of a path to the maximum potential energy in the 

upper point), it is possible to describe the dynamics both of the oscillating and 

rotating MP in spite of the fact that it is topologically different movements. It is 

essential also that for the MP it is found a number of exact and interesting ratios 

which are expressed through the gold ratio constants ( 1 5) / 2    and 

(1 5) / 2  . Besides, it is shown that basic scales can form the so-called Kepler’s 

and meta-triangles found, in particular, in geometry of the Great Pyramid of Cheops.

   

       The MP (also called the simple pendulum) is a system consisting  of  a  rod  of  

length L and of negligible mass or a string, which also is assumed to be massless and  

unstrechable, and a point mass m, attached to the rod or string and called the 

pendulum bob. The rod or string is attached to a pivot which  is  the  point  to  swing  

from. 
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       The forces acting on the bob are the tension in the string F and the gravitational  

force P mg .When the bob is displaced and released the tangential component of P  

produces a restoring force, which always acts in the direction opposite to the 

displacement of the bob. As a result the bob oscillates. However oscillations are not 

isochronous and only at very small initial deflection angles of  a rod or string  from  a  

vertical ( 0 0 ) the oscilation period T practically does not depend on oscillation 

amplitude:  2 4
0 0T 2 L/g (1 /16 11 /3072 ) 2 L/g           (g  - is  the 

free fall acceleration). 

       The dependence of the period of the MP on the free fall acceleration forms the 

basis of a very accurate method for determining this acceleration. This method is 

widely used in practice. 

       In this article a row of new nontrivial pequliarities in the dynamics of the 

oscillating and rotating mathematical MP is set with the help of the method of the 

sized scaling (SS), which was offered by us in [3,4].  

      Assuming that the expression for the MP oscillation frequency 2 /T   

depends on 3 possible parameters 
0g L V m       ( V is the bob speed in the 

lower point of a path) we receive the equation for determination of 3 (!) indexes 

, ,   through 2 (!) values (units of time T and lengths L, 
1[V] L T  ):  

1 2T L T L L T           .   Mass  of  the  bob  is  not  included  into  this  equation         

( 0m m  ) since all bodies have the same gravitational acceleration.   

      From this equation it follows that there is an infinite number of combinations of  

indexes determined by expressions (1 ) / 2  , ( 1 )/ 2   ,. The 

values of indexes , ,   lie in the plane 1 1 1 0   . 

      Thus, along with the well-known scale of the MP oscillation and rotation 

frequencies 0M g/ L   ( 0 ) exists infinitely large number of other scales   

M (2 ) g/ L
   (

2 2V / 4gL   is the relation of the bob kinetic energy  in the 

lower point of a path 2mV /2 to the maximum potential energy 2mgL in the upper 
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point), - any number. So, in case of 0   we receive “usual” scale 0M g/ L , in 

case of 1  the basic scales 1M V/ L ,  1M g/V   from 2 parameters, in case 

of  1/2, 1/3     the  scales  from  3  parameters  1/ 2M g / L (V / L)  , 

1/2M g/L (g/V)   ,  3
1/3M (g/ L) (V/ L)  ,  3

1/3M (g/ L) (g/ V)   . 

       It  is  essential  that  both  the  geometric  averages   from   2  symmetric   scales  

0M M M    and the generalized geometric averages from 2n 1  symmetric 

scales  
i n2n 1

i 0i n
M M




   are equal to scale 0M g/ L . 

      From the conservation law of a total energy for the conservative system – the MP 

                                     
2 2L (d /dt)

m mgL(1 cos ) E
2


                                      (1) 

it follows that the period of oscillations of the MP is defined by expression:           

                                     

    o
OS 0 2 2

0

/2

0

L d L d L
T 4 4 4 K( )

2g g gcos cos 1 sin

  
    

    
          (2) 

- angle of deflection of the rod (string) from vertical, 0sin sin( / 2) / sin( / 2)   ,  

2 2 2
0sin ( / 2) V / 4gL    , 

/2 2 2

0
K( ) d / 1 sin


       is the 1st kind full 

elliptic integral. 

       At 0 1  for approximation of K( )  integral the following power series are 

used [5-7]: 

               
/2 2 2n

2 2
n 1

0

d 1 3 5 ... (2n 1)
K( ) {1 [ ] }

2 2 4 6 ... 2n1 sin





      
    

    
              (3) 

       At 1  we used another approximation of  K( )  integral:            

                 
2 4 6
1 1 1

1 9 7 5 37
K( ) ( ) ( ) ...

4 64 6 256 30


                             (4),  

where 1ln(4/ )  ,   2
1 1   .  
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       From the law of conservation of energy for the rotating MP:       

                      
2 2 2mv ( ) / 2 m(Ld /dt) / 2 mV /2 mgL(1 cos )                     (5)   

it follows that the period of rotation is defined by expression:                     

                                 RT 2 2

/2

0

2L d 4L
T 2 K(k)

V V1 k sin




   
 

                           (6)       

where / 2  ,  
2 2 2 2k mg2L/ (mV / 2) 4gL/ V 1/    .          

      Proceeding from (2), (6), it is possible to show that the frequencies in different 

scales are defined by the following expressions for the oscillating and  rotating MP: 

                                      
1

OS ( / 2)(2 ) K ( ) 
                                                 (7)                                                             

                                     
1 1

RT ( / 2)(2 ) K (1/ ) 
                                             (8) 

       In the case of the inversion of parameters  1/   the  elliptic  functions  for  

the oscillating MP  K( )  are replaced with the functions for the rotating  MP  

K(k 1/ )   and vice versa.  In this regard it should be pointed out, for example,  that 

at  inversion 1/  in the scale 1/2M g/L (V/L)   which is geometric 

average for  the scales 0M g/ L and 1M V/ L  corresponding accordingly to the 

oscillating and to rotating movements the rotation frequency  is exactly twice more 

larger than the oscillation frequency:  RT OS2    (see fig. 1). 

     

       Fig.1. Calculated dependences  of  the MP oscillation and rotation frequencies  

1/2 1
0.5OS( ) ( / 2)(2 ) K ( )          and   

1/2 1
0.5RT( ) ( / 2)(2 ) K (1/ )        at 

1/ 2  (curves 1 (0 1 ),  2 (1) respectively), 0.5RT 0.5OS(1/ ) / ( ) 2     .                                                
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      This symmetry takes place and in the MP equations of motion: 

                     OS OSv (t) (Ld /dt) V cn(t g/ L, )      ,      0 1                   (9), 

                     RT RTv (t) (Ld /dt) V dn(t V/ 2L, )      ,      1               (10) 

       At inversion of parameters  1/   the elliptic function  cn for the oscillating 

MP are replaced with  dn  function for the rotating MP and vice versa.  

       At the same time elliptic functions:  cosine  -  cn   and   sine - sn  are  defined  

as follows.  According  to  (2)  dimensionless time   of  the  bob  movement  from  

vertical position to the deviation angle   it is equal: 

                                2 2

0
t g/L d / 1 sin


                                              (11) 

       The upper limit in this integral    is  the inverse function of this integral  and  is  

called “amplitude” and designated as 
2am( , )    .  

       Functions   
2sin(am( , ) sn( , )     ,   

2cos(am( , ) cn( , )       are  called  the 

elliptic  sine  and  cosine,  
2 2sn ( ) cn ( ) 1,       sn( ) sn( ),      cn( ) cn( )   .  

Their main  periods  are 4K and  2K' i , where K' K(k') , 2k' 1 k  , i 1    

[6-7]. 

       The elliptic function dn is defined as  2 2dn( ,k) 1 k sn ( ,k)       and  has  the 

main periods 2K(k), 2K'i [6-7]. 

       From definitions of the elliptic functions it can be found the following 

transformations   at   parameters   inversion   ( 1/ ):   sn( ,1/ k) k sn( / k),      

 cn ,1/ k dn( ,1/ k),       dn( ,1/ k) cn( / k,k)   .     And,  respectivelym   at   this 

transformations the scale g/ L for time  changes on  g/ L / k V/ 2L . 

       For the movement on a separatrix ( 2 2k 1   ) equation (1) has exact solutions: 
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                    d /dt 2 g/ L cos( / 2) 2 g/ L / ch( g/ L t)                       (12), 

                    2 arcsin(th( g/ L t)) 4 arctg(exp( g/ L t))                       (13) 

        It  is  found  that  the dependences 2( )   can be or the monotonic, or having  a 

maximum  in  the  field  of   oscillations  ( 20 1  )   or  in   the   field   of   rotation 

( 21 ). At the same time all dependences ( )   are crossed in one point in 

case of any   (see  fig. 2):   
2 2( 0,5) / 2 0,1483 1/ ( )( )      .  

          

                                                                                                                                                                

                Fig. 2. Calculated dependences of the MP oscillation and rotation frequencies 

OS( )   and RT( )   at various values of parameter  :  0 (scale g/ L ),  1  

(scale V/L).  1  (scale g/V) - curves 1, 2, 3. 4, 5, 6  respectively.                                

       It is established that the maximum in dependences  ( )    takes place at 0 . 

For the curve 3 in fig. 2  
2

1OS max 1OS( ) / 2 (0,83746) / 2 ( )       !! 

At  the same time 
2
max 0,70134 3 / 4  . Accounting that 

2 2V / 4gL  ,  we  

can find that the  optimal  MP  length optL   for  scale  1M g/L  ,  at  which  the  
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dependence ( )   is the most flat, is equal 2 2 4
optL V / 3 g V / 1 g   . 

     The existence of a maximum in dependence ( )   for the scales having V in 

denominator ( 0 ) it is possible to explain as follows.  At small  2  (small V) the 

scale M  is great. With increase of 2  the frequencies in the beginning grow because 

of decrease of scale M . However at further increase of 2  effects sharp decrease of  

1 2K ( )  , that is caused by the fact that at larger V  the oscillating bob gets to the 

area of angles o180  at which movement becomes very slow and ( 1) 0   

(period T ( 1)  ).  This reasons explain also that for the scales having V in 

numerator  ( 0 ) with the increase of 2  takes place the monotonic decrease  of  

( )   (curve  2 in fig. 2). 

       It is important that the maximum  in  dependences   ( )   at 0  is  minimum  

at   5 50,203643 ( ) /11 ( ) / ( ) 0,203278       and at the same time 

coincides with a cross point of all schedules (!) at 2 1/ 4   (see fig. 3). 

        

       Fig. 3   Calculated  dependences  of  the  MP  oscillation  frequencies  ( )    at  

0,01 ,  0,203643790 , 0,50  (curves 1, 2, 3 – respectively).      
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       In this case 2 2
max 2036( ) / 2 (0,5) / 2 0,1483 1/ ( )( )         , 

2 2
opt1/ 4 V / 4gL    and, therefore,  the optimal length is 2

optL V /g  !  

       It is found  that at 2 1/ 4    geometric averages  M M   and      are 

equal to their arithmetic averages   (M M )/ 2    and   ( ) / 2   ,  as a result 

all scales at 2 1/ 4   become equal.    

      Corresponding to equality of scales at 2 1/ 4   in this case the angle of the 

maximal deviation of the MP string (or rod) 
2 2

0 /3 / ( )     , at the same 

time  the MP in any scale () gives the same results ! 

      Let's compare to scales 0M ,M ,M  the line segments entered in a semicircle as 

it is shown in fig. 4.   At change  2  the line  segment  CD moves  on  the  diameter  

AB and  at  2 1/ 4    bisects AB and at this time 0M M M   . 

                         

                                                              Fig. 4 

       At 2 1/ 4   angles A,B in fig. 1 are equal / 4  for any scales.  At  the  same 

time  when passing value 1/2  it can be sharp change of angles  A,B from 0 to 

/ 2  or from / 2  to 0. The corresponding dependences A( ), B( )     are shown 

in fig. 5  for 0,2, 1, 12      (curves 1-6 respectively). 
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                                                                             Fig. 5 

        Thus, at 1/2  in the MP it can be the effect of “bistability of scales”: the ratio 

M M   changes on inverse  M M  . 

       Accounting that M (2 ) g/ L
   ,    M (2 ) g / L

   ,  0M g/ L   we 

receive that in fig. 4  A arctg(2k)  ,  B arctg(2k) / 2 A    . In case 1   

1M 2 g/ L V/ L   ,  1M (1/ 2 ) g/ L g/ V     ( V/2 gL ). 

       In [8] a certain abstract rectangular triangle ABC with the sides AB c , 

AC b , BC a  (see fig. 4) is called Kepler's triangle, if lengths a, b,c form a 

geometrical progression. If CD h  is the perpendicular to the hypotenuse AB,

AD e , BD d , then in Kepler's triangle h d e  , a c d  , b c e  , 

h c a b   , 2 2 2h a b    . 

       In [9] the rectangular triangle is called a meta-triangle if, along with the 

Pythagorean theorem  2 2 2a b c  , the ratio a b c   is executed. 

       In [8] it is supposed that the meta-triangle is a special case of the Kepler’s 

triangle, in [9],  on the contrary, it is supposed that the Kepler's triangle is a special 

case of a meta-triangle.      
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       These two types of triangles have been found earlier in our work [4] without 

using the ambitious names. In this article we will give for these triangles concrete 

physical sense according to designations in fig. 4.  

      Assuming that 1 ,  0h M g/ L 1   , we will consider four  important  cases  

of relations between the pieces  AD and BD. As a result we will receive a number of 

interesting geometrical and physical relationships.  

       1.
2 2 2

1 1AD/ BD M / M (2 ) V /gL     . From the energy conservation law 

2
MmV / 2 mgL(1 cos )    we will receive that the angle of maximum deviation of 

the MP string (or rod) 
2 2

M arccos(1 / 2) /5 / ( )      .  At the same time 

1AD M ,    1BD M ,    0CD M 1  ,    2AC 1   ,    2BC 1   , 

oA arctg 58,282525589   , 
oB arctg 31,717474411   . 

       It is interesting that in this case “der wurf”  (german - throw) for the pieces 

AD e,CD h,BD d    is eqial to the ideal value 2 / 2 1/ 2    [10]:   

                          
2

ehd
(e h)(h d)

W / 2 1,309016994
h(e h d)

 
 

 
 

       But this ABCis not Kepler's triangle and at the same time it is meta-triangle (!):  

                             2 2 2c/a ( )/ 1 a/b 1/ 1          , 

                                          2 2a b 1 1 c       

1.        2. 
2 2 2

1 1AD/ BD M / M (2 ) V /gL     . In a similar manner we will 

receive   
2 2 2 2

M arccos(1 / 2) 3 /5 ( ) / ( )         ,    1AD M , 

2. 1BD M ,  0CD M 1  ,   
2AC 1   ,    2BC 1   ,    A arctg  , 

3. B arctg  , dheW  2 / 2 .   

        This ABC is also not Kepler's triangle, but it is also meta-triangle as 

                             2 2 2c/b ( )/ 1 b/a 1/ 1          , 

                                          2 2a b 1 1 c       
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4.        3. 
2 2

1 1AD/ BD M / M (2 ) V /gL     . Also as in variant 1 we will 

receive that 
o

M arccos(1 / 2) 0,807483293 / 2 46,292025263     ,  

1AD M   ,   1BD M   ,   0CD M 1  ,   AC 1  ,    BC, 

5. oA arctg( ) 51,827292373 ,   oB arctg 38,172707627   , 

6.            ehd
( 1)(1 ) 1

W 1 1,326992830
1 ( 1 ) 1

  
   

      
2 / 2  

7.        But  this ABC is simultaneously the Kepler's and meta-triangle (!!) as  

                     c/ a ( ) / a / b / 1 1,272019650       , 

                             a b c 2,058171027       

 

       4. 
2 2

1 1AD/ BD M / M (2 ) V /gL    . Also as in variant 3 we will 

receive  that   
2 o

0 arccos(1 / 2) 1,378532839 1 78,989843166     , 

1AD M  ,  1BD M   ,  0CD M 1  ,  AC,  BC 1  , 

oA arctg 38,172707627   ,   
oB arctg( ) 51,827292373 ,    

              dhe
( 1)(1 ) 1

W 1 1,326992830
1 ( 1 ) 1

  
   

      
2 / 2  

8.        But  this ABC is also simultaneously the Kepler's and meta-triangle (!!) as  

                      c/ b ( ) / b/ a / 1 1,272019650       , 

                               a b c 2,058171027       

       In the completion it must be pointed out some other interesting relations, which 

were received in the MP dynamics from physical reasons and which are revealed  a 

new  results in the golden ratio geometry and trigonometry. The omnipresence of the  

golden ratio constants ,  is caused, in particular, by the fact that any integral 

number can be  precisely expressed through their combinations, including the 

symmetric. For example,  1, 2,  
2 23  , 

3 34  , 

25 ( )  ,  
4 47  , 

5 511    and so on.   



12 
 

      The relation of the components of the bob impulse p  on the vertical and 

horizontal axes 2 2
y xp /p tg( ) , , , , ,         are realized accordingly at 

following angles  of the bob deviation from a vertical: 

   2 2 o
1 2 2
( ) arctg( ) arccos( ) 20,905


    

 
,      

2 2
2 1( ) ( )     

      o
1 2
( ) arctg( ) arccos 31,717

1

 
       

  
,         2 1( ) ( )     

          o
1 arctg( ) arccos 38,173      ,          2 1( ) ( )     

          o
1 arctg( ) arccos 51,827      ,        2 1( ) ( )     

         o
1 arctg arccos 58,283

 
     

 
,        2 1( ) ( )     

        2 2 o
1 5 3

2
arctg arccos 58,283

 
     
   

,     
2 2

2 1( ) ( )     

      It is important that the  relative sum and difference of the potential energies of the 

bob at these angles 1 1U ( ) ,  2 2U ( ) , normalized on maxU 2mgL ,  are equal:  

                   1 1 2 2 max 1 2[U ( ) U ( )]/ U [(1 cos ) (1 cos )]/ 2 1          ,                  

                              2 2 1 1 max 1 2[(U ( ) U ( )]/ U cos( ) cos( )        

       The angle of maximum deflection max  of the MP rod (or string) is equal 

                                    
2

max( ) arccos(1 2 )     ,     max(1)  

       At the same time the angle of deflection 0  at which the component of 

gravitational force along the MP  rod (or string) is equal to  centripetal force and, 
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therefore, the tension of the rod (or string) is equal to zero is determined by the 

expressions:  

                                         
2 2

0( ) arccos[2(1 2 ) /3]     ,      

          
2 2 o

0 0/ 2 ( ) ( 1) arctg[ ( 1/ 2)] 2,300524 131,810315          ,                   

                          
2 o

0( 1/ 2 3 / 4) 2,237035 128,172707      , 

                 
2

0tg[ ( 1/ 2 3 / 4)]      ,   
2

0cos[ ( 1/ 2 3 / 4)]     , 

            
2 o

0( 1/ 2 3 / 4 ) arctg( ) 2,124371 121,717474         , 

                    2
0cos[ ( 1/ 2 3 / 4 )] / ( ) 0,525651          

        In the case when  the  bob  is  suspended  on  the  string,  the  bob,  after  passing  

the angle 0 ,  moves not on a circle any more, but on a parabola as the  body  moving 

in  a uniform gravitational field.   

       For the MP it is possible to find many other interesting relationships which are 

also precisely expressed through constants , . 

       For example, if the point of suspension of the MP string  be shifted with velocity 

Ov  in the horizontal direction when the MP is on a platform in a moving object. In 

the reference system connected with this object, the bob will begin to move on a 

circle. According to the Newton`s second law and the energy conservation law for the 

top point of a trajectory A we will receive    

                                   
2

A Amg F mv / 2  ,      
2 2
O Amv / 2 2mgL mv    

 where AF  is the string tension at the point A.  Proceeding from the condition        

                                   
2

A OF m(v 4gL) / L mg 0     

 we will receive that minimum speed of the movement of the  suspension point O  at  
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which the bob will begin to move on a circle, is equal  2
Ominv 5gL ( ) gL   . 

       Similarly proceeding from the Newton’s second law and the energy conservation 

law for the string deviation by o90  degrees at the point B  

                           
2

B BF mv /L ,            
2 2
A Bmv / 2 mv / 2 mgL  , 

we will receive that the string (or rod) tension in the horizontal position BF  is also  

symmetrically and beautifully  expressed through the constants of the golden ratio:   

2 2
BF 3mg ( )mg    . 

       Thus, by means of the MP it is possible to register not only the accelerations, but 

also the speeds of movement. 

       At last, we will return to fig. 4. ABC in variant 3 is a half of the frontal section 

of pyramid of Cheops [11,12] - ABA', which is formed at a mirror reflection of 

ABC from the sideAB. Therefore, if to use the scale in which a unit of length is 

CD=h=1  then all  ratios received in variant 3 will be satisfied also for the pyramid of 

Cheops, i.e. a half of its frontal section will be simultaneously both the Kepler's  and 

the meta-triangle. In other scales when CD h 1  , the condition of existence of the 

meta-triangle a b c   is not satisfied.  

       According to [11,12] for the  pyramid of Cheops the condition  of  receiving  the  

ideal wurf is satisfied for 3 pieces of the ABA'– the height of pyramid  H BC ,  

the  radiuses  of  the  circle  Sr   and the radius  of the semi-circle SSr CD h 1   ,   

entered in the ABA' :  
S SS

2
r r HW /2 .  At  the  same  time   S SSH r r   

       Let's emphasize that the very important criterion of the nonrandomness of 

existence of the specified regularities for the Pyramid of Cheops are, firstly, the fact 

that exactly at H the function SS Sr(H) r (H) r (H)    has the extremum 

(maximum), and, secondly, the function SS Sr(H) H r (H) r (H) H      changes a 

sign and passes through zero. 
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