НАНОМОЛЕКУЛА «ФУЛЛЕРЕН С60»: ГЕОМЕТРИЯ И АРИФМОМЕТРИЯ

Гармония «самой красивой молекулы» основана на числах-модулях, которые иначе как дивными не назовешь. А их великолепие открывается «бриллиантовым» ключом от «золотой» пропорции.

Как показано выше, в геометрии существует проблема диарезиса, препятствующая ее арифметизации из-за невозможности определить принадлежность точки деления, например, отрезка c=2 к его частям a и b, понимаемым как числа, связанные отношением порядка $0 < a \le b < 2$. То есть, отождествление точек и чисел в образе числовой оси является противоестественным, так как приписанная ей непрерывность мнима и противоречит наблюдаемой дискретности вещества в природе.

Напротив, арифмометрия, альтернативная геометрии, считает дихотомию 2=1+1 способом определения единиц в множествах, образуемых массами и характеристиками их движения (скоростями, ускорениями и т. д.) в бинарных системах, обусловленных физическими взаимодействиями. При этом арифмометрия опирается на секстетные связи скаляров от 0 до 2, выделяя у числа 2 контрсимметричные части a=1-d и b=1+d, где число-отклонение $d=\frac{b-a}{2}$ связано с числом-отношением

$$c = \frac{a}{b}$$
 конверсией и $2 = a + b = (1 + c)(1 + d) = (1 + c^{-1})(1 - d)$.

Секстетное исчисление нетривиально решает ряд задач механики и физики, а арифмометрические связи (конверсия, контрсимметрия, контркоммутативность и др.) между числами секстета представленные символами, может быть шифруют ма-

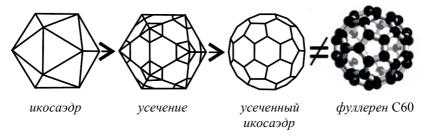
тематическую гармонию мира. Ведь секстетные формы являются самыми общими решениями первых задач физики и механики, связанных с относительностью движений, гравитацией и распространением света. К этим решениям в будущем следует добавить арифмометрическое описание электромагнетизма, обозначенного выше как апейронное взаимодействие, механизм которого обеспечен потоками, исходящими из «темной» материи в недрах сфероидов - звезд и планет.

И не исключено, что потоковое взаимодействие, как суперпозиция магнитных и электрических свойств вещества, обеспечивает стабильное существование атомов и молекул, а также
лежит в основе квантовых закономерностей в виде целочисленных соизмеримостей ареальных скоростей планет земной группы, например. При этом понятие действительного числа, выросшее из поштучного счета, не может остаться незыблемым и
требует пересмотра в сторону отказа от чисел вообще, что выдвигает на первый план операции с объектами физики. Но тем
не менее продолжим пользоваться понятием числа и образами
геометрии, не забывая об их антропоморфизме.

Известным из геометрии малому $\phi^1=0.618...<1$ и большому $\Phi^1=1.618...>1$ скалярам Фидия в арифмометрии соответствует число s_2 в степенях +1 и -1, являющееся основанием бинарного представления единицы $1=s^{+1}+s^{+N}=s^{-N}-s^{1-N}$ при N=2. Таким образом в длинном ряду $\{s_N\}$ системных скаляров число $s_2=0.618...$ занимает вторую позицию после полуединицы и двойки. При этом дихотомии 1=0.5+0.5 и 2=1+1 предшествуют диарезисам $1=\phi^1+\phi^2$ и $2=\phi^{-1}+\phi^2$, отличающимся инверсией первого слагаемого справа после знака равенства. Но это не значит, что инверсия различает единицу и двойку, кото-

рые, как и все числа, антропоморфны. Скорее речь идет о логическом операции «либо одно, либо другое», предполагающей незавершенные вычисления $\phi^1 = 1 - \phi^2$ и $\phi^{-1} = 2 - \phi^2$ с результатом «меньше чем 1» или «больше чем 1». При этом единица выбрана по принципу виртуального масштаба, являющемуся постулатом арифмометрии. В итоге мы имеем переменную $\phi^{\pm 1}$ и константу ϕ^2 , позволяющие различать не числа 1 и 2, а процессы 1 и 2, каковыми являются tracking и winding.

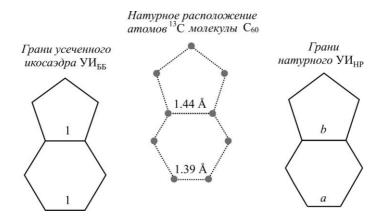
Как видно, системный скаляр s_2 с золотым окрасом озадачивает вопросом: какие числа правят миром? Натуральные, нумерующие ряд 0.5; 0.618...; ...; s_N ; ..., или иные – с основанием в виде виртуального масштаба? Причем виртуальная единица, в отличие от хранимого эталона физической величины существует лишь формально как среднее арифметическое двух количеств, образующих бинарную систему того или иного рода. Примеры таких систем, как и решения поставленных ими задач приведены выше. А теперь представим арифмометрический расчет «самой красивой молекулы», учитывающий неправильность ее формы по отношению к приписываемому ей идеальному образу в виде усеченного икосаэдра.



Прежде всего отметим, что усеченный икосаэдр (УИ), называемый бакиболом (ББ), не является фигурой, вершины который

отвечают фактической расстановке атомов углерода 13 С в молекуле С60. Ведь по геометрическому определению УИ_{ББ} имеет одинаковые ребра, а измерения показали, что атомы в составе фуллерена С60 образуют 5- и 6-угольные кластеры со сторонами, равными 1.44 Å у правильных 5-угольников, тогда как в кластерах из шести атомов три стороны имеют такую же протяженность 1.44 Å = b^* , а остальные примерно равны 1.39 Å = a^* .

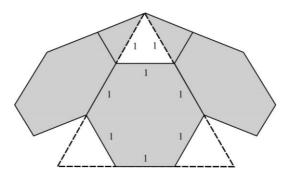
Как видно, геометрически атомы углерода находятся в вершинах многогранника, отличающегося от УИ_{ББ} тем, что его ребра не одинаковы. Пусть 5-угольные грани усеченного икосаэдра с неравными ребрами (УИ_{НР}) ограничены отрезками длиной b, а стороны 6-угольных граней, не граничащие с пентаклями, равняются a < b. При этом отношение $\frac{a}{b} = \frac{a^*}{b^*} = \frac{1.39}{1.44} = 0.97...$ будем считать достоверным параметром молекулы C60.



Очевидно, что различие У $И_{HP}$ и У $И_{ББ}$ с единичными ребрами возникает при отсечении 5-гранных пирамид от икосаэдра $И_3$ с длиной ребра, равной 3. При этом для фигуры У $И_{ББ}$ глубина

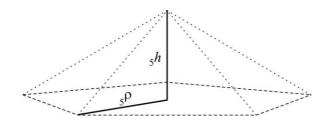
сечения $_{5}h=\sqrt{\frac{5-\sqrt{5}}{10}}$ равна высоте пирамиды с единичными

ребрами, тогда как УИ_{НР} получается из И₃ отсечением 12-ти пирамид высотой $_5h'>_5h=0.525731...$ И если 5-угольные сечения отстоят от вершин платонова многогранника И₃ на $_5h'=k\cdot_5h$, где k>1, то сторона пентакля имеет длину b=k=1+d, где d=k-1. При этом шестиугольная площадь, оставшаяся от треугольной грани тела И₃ после отделения трех равносторонних треугольников, ограничена тремя отрезками длиной b=1+d, концы которых разделены интервалами a=1-2d.



Ясно, что при a=b=1 глубина сечения тела U_3 равна ${}^5h=\sqrt{\frac{5-\sqrt{5}}{10}}$, где $\sqrt{5}=\phi+\Phi=\Phi^2-\phi^2=2+\phi^3$ - число, одиозное своей двойственностью, а точнее первостепенным качеством в виде суммы $\phi+\Phi$ и квадратичным характером в форме разности $\Phi^2-\phi^2$. Причем ${}_5h^2=\frac{\phi^2}{1+\phi^2}=\frac{\phi^3}{1-\phi^4}=\frac{1-\phi^3}{2(1+\phi^2)}=\frac{\phi(1-\phi^3)}{2(1-\phi^4)}$ или ${}_5h^2=\frac{\alpha-1}{\alpha}=\frac{1-\gamma}{\beta}=\frac{\gamma}{2\alpha}=\frac{\phi\gamma}{2\beta}$.

Заметим, что модули α и β , выражающие связь второй и четвертой степеней числа ϕ с единицей, присутствуют в выражении $_5\rho=b\sqrt{\frac{5+\sqrt{5}}{10}}=\sqrt{\frac{1}{\alpha}}=\sqrt{\frac{\phi}{\beta}}$ радиуса окружности, описанной вокруг 5-угольного основания равнореберной (b=1) пирамиды высотой $_5h=\sqrt{\frac{5-\sqrt{5}}{10}}$. А так как $_5h^2+_5\rho^2=1^2$, то числа $_5h^2=\frac{5-\sqrt{5}}{10}=0.5-\left(\frac{0.5}{10}\right)^{0.5}$ и $_5\rho^2=\frac{5+\sqrt{5}}{10}=0.5+\left(\frac{0.5}{10}\right)^{0.5}$ контрсимметричны относительно скаляра 0.5, отличаясь от него на $\delta=\mp\left(\frac{0.5}{10}\right)^{0.5}$. И этот факт стимулирует поиск тождеств, допускающих внятную интерпретацию в духе арифмометрии.



От геометрического понимания формы $1^2=_5h^2+_5\rho^2$ как случая теоремы Пифагора для единичной гипотенузы с контрсимметричными квадратами катетов перейдем к ее арифмометрической интерпретации. При посредстве чисел $\alpha=1+\phi^2,\ \beta=1-\phi^4$ и $\gamma=1-\phi^3$ получим $1^2=\frac{\alpha}{\alpha}=\frac{3-\gamma}{2\alpha}$ и $1^2=\frac{\phi\alpha}{\beta}=\frac{\phi(3-\phi^3)}{2\beta}$, откуда следует, что модули $\alpha=1+\phi^2$ и $\beta=1-\phi^4$ определяют квадрое-

диницу 1^2 как собственными значениями, так и удвоенными. При этом $\alpha+\beta=2+\phi^3$, $\alpha-\beta=\phi^3$, $\alpha\cdot\beta=1+\phi^3(1-\phi^3)$ и $\alpha:\beta=\phi^{-1}$. А так как $\frac{\beta}{\alpha}=\phi^1$, то из $\frac{\alpha-\beta}{\alpha+\beta}$ следует $\frac{1-\phi^1}{1+\phi^1}=\phi^3 \Leftrightarrow \phi^1=\frac{1-\phi^3}{1+\phi^3}$, что выше обозначено как конверсия.

Как видно, в отношениях элементов равнореберной пирамиды как объекта элементарной геометрии присутствуют понятия контрсимметрии и конверсии, свойственные арифмометрии. Но при этом усеченный икосаэдр УИ $_{\rm ББ}$, называемый бакиболом, имеет единичные ребра, что не соответствует отношению $a^*:b^*$ действительных расстояний между атомами фуллерена С60 в 6-угольных кластерах, соответственно равных $a^*=1.39$ ангстрем (на стыках с такими же фигурами из шести атомов) и $b^*=1.44$ ангстрем (на общих границах с правильными 5-угольниками).

Продолжим сбор геометро-арифметического материала для арифмометрического анализа числовых выражений символов и операционных связей между ними с целью количественного описания молекулы фуллерена C60.

Таблица А

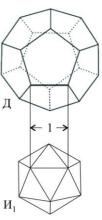
сфера тело	вписанная	описанная
икосаэдр	$\frac{\Phi^2}{2\sqrt{3}}$	$\frac{\Phi\sqrt{3-\Phi}}{2}$
додекаэдр	$\frac{\Phi^2}{2\sqrt{3-\Phi}}$	$\frac{\Phi\sqrt{3}}{2}$

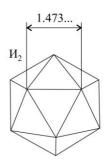
Известно, что платоновы многогранники - икосаэдр и додекаэдр с ребрами l=1 единичной длины имеют вписанные и описанные сферы, размер которых определяет число Фидия $\Phi=1.618\dots$ При этом представленные в таблице А радиусы ${}_5R$ и ${}_3R$ сфер, объединяющих вершины додекаэдра Д и включающих вершины икосаэдра И, и радиусы ${}_5r$ и ${}_3r$ сфер, изнутри касающихся их 5- и 3-угольных граней, связаны подобием $\frac{\Phi^2/2\sqrt{3}}{\Phi^2/2\sqrt{3-\Phi}} = \frac{\Phi\sqrt{3-\Phi}/2}{\Phi\sqrt{3}/2} = \sqrt{\frac{3-\Phi}{3}}, \ \text{где} \ \frac{3-\Phi}{3} = \frac{1+\phi^2}{\phi^{-2}+\phi^2} = 0.460655..$

число-модуль, получаемое операциями с целыми степенями основания $\phi = 0.618...$

Очевидно, что единичное слагаемое в числителе модуля вряд ли имеет смысл длины l=1 ребер платоновых тел Д и И. К тому же геометрический ряд $\{\phi^n\}$ с иррациональным основанием, равным второму (N=2) члену множества системных скаляров $\{s_N\}$, не содержит единицы, если исключить нуль из состава целых чисел n, считая его неуместным в качестве показателя степени. Поэтому числа, как модули из целых степеней скаляра ϕ , связанных действиями, будем называть операционными.

А теперь, зная о присутствии чиселмодулей в конструкциях многогранников Д и И, применим полученные знания для описания многогранника, известного как усеченный икосаэдр.





Ясно, что растяжение каждого из тридцати ребер икосаэдра $\rm M_1$ в $p=\sqrt{\frac{3}{3-\Phi}}$ раз увеличит его вписанную и описанную сферы до размеров соответствующих сфер додекаэдра Д и удлинит единичное ребро фигуры $\rm M_1$ до размера p=1.473370... В итоге получим тело $\rm M_2$, p-подобное $\rm M_1$.

А теперь усечём многогранники U_1 и U_2 , отделяя от этих тел объемы в форме равнореберных пирамид определенной высоты с 5-угольным основанием. Ясно, что ребра усеченного икосаэдра YU_1 , полученного из U_1 , равняются одной третьей единицы. Причем ребра тела YU_2 , оставшегося от U_2 , имеют длину

$$a_2=rac{1}{\sqrt{3(3-\Phi)}}=rac{\phi}{\sqrt{1+\phi^2+\phi^4+\phi^6}}=rac{1}{\sqrt{4+\phi^4}}=rac{1}{\sqrt{2(2+\phi^4/2)}}=0.493123...$$
 в $p=1.473370...$ раз больше длины ребра $a_1=0.3333333...$ УИ $_1.$

И, наконец, усеченный икосаэдр УИ $_2$ увеличим так, чтобы его ребра стали единичными по длине, для чего умножим a_2 на $\sqrt{4+\phi^4}$. В итоге имеем три усеченных икосаэдра: УИ $_1$ с ребром $a_1=0.333333...$, УИ $_2$ с ребром $a_2=0.491123..$ и УИ $_3$ с ребром $a_3=1$. Пусть охватывающие их сферы имеют общий центр и, значит, расположены одна в другой. При этом у каждого из тел УИ $_1$, УИ $_2$ и УИ $_3$ выделяются две вписанные сферы, одна из которых (большая) касается 5-угольных граней, а другая - меньшая по размеру - изнутри контактирует с 6-угольными.

Модульные выражения радиусов $_5r_i$ и $_6r_i$ вписанных сфер и радиальных размеров R_i сфер, описанных возле усеченных икосаэдров УИ $_i$ (i = 1, 2, 3), приведены в таблице Б.

Таблица Б

ребро	$a_3 = 1$	$a_2 = 0.491123$	$a_1 = 0.3333333$
R	$\frac{\Phi^3}{2}\sqrt{1+\phi^4+4\phi^6}$	$\frac{\Phi^3}{2} \frac{\sqrt{1 + \phi^4 + 4\phi^6}}{\sqrt{4 + \phi^4}}$	$\frac{\Phi^3}{2} \frac{\sqrt{1+\phi^4+4\phi^6}}{3}$
5 <i>r</i>	$\frac{\Phi^2}{2\sqrt{3-\Phi}} \times \sqrt{4+\phi^4+4\phi^6}$	$\frac{\Phi^2}{2\sqrt{3-\Phi}} \times \frac{\sqrt{4+\phi^4+4\phi^6}}{\sqrt{4+\phi^4}}$	$\frac{\frac{\Phi^2}{2\sqrt{3}} \times}{\frac{\sqrt{4 + \phi^4 + 4\phi^6}}{\sqrt{4 + \phi^4}}}$
6 r	$\frac{\Phi^2}{2}\sqrt{3}$	$\frac{\Phi^2}{2} \frac{1}{\sqrt{3-\Phi}}$	$\frac{\Phi^2}{2} \frac{1}{\sqrt{3}}$

Как видно, значения R_i , ${}_5r_i$ и ${}_6r_i$ заданы числами $\phi=0.618...$ и $\Phi=1.618...$, подстановка которых в модульные выражения радиусов дает, например, для i=3 точно такие же результаты $R_3=2.478019...$, ${}_5r_3=2.327438...$ и ${}_6r_3=2.267284...$, что и формулы $\frac{1}{4}\sqrt{58+18\sqrt{5}}$, $\frac{1}{2}\sqrt{\frac{1}{10}\Big(125+41\sqrt{5}\Big)}$ и $\frac{1}{2}\sqrt{\frac{3}{2}\Big(7+3\sqrt{5}\Big)}$, полученные с помощью ЭВМ подбором целых чисел под первые радикалы.

Итак, выбор длины ребра a_3 усеченного икосаэдра УИ $_3$ единицей сравнения характерных размеров трех подобных многогранников обнаруживает возможность их выражения целыми степенями чисел Фидия ϕ и Φ . А арифмометрическое представление данных таблицы Φ выделяет числа-модули, обозначенные буквами в ячейках таблицы Φ .

Таблица Б*

			т иолпіци в
ребро радиус	$a_3 = 1$	$a_2 = \frac{1}{m}$	$a_1 = \frac{1}{3}$
R	$D\frac{k}{1}$	$D\frac{k}{m}$	$D\frac{k}{3}$
₅ r	$\varphi D \frac{n}{m} 3^{+0.5}$	$\varphi D \frac{n}{m} \alpha^{-0.5}$	$\varphi D \frac{n}{m} 3^{-0.5}$
6 r	φD3 ^{+0.5}	$\phi D lpha^{-0.5}$	$\varphi D3^{-0.5}$

Как видно, общим множителем чисел-радиусов яляется модуль $D=(2\phi^3)^{-1}$, умножаемый на радикал $k=\sqrt{1+\phi^4+4\phi^6}$ в строке значений размеров $R_{3,2,1}$. При этом общим множителем радиусов ${}_5r_{3,2,1}$ следующей строки является блок $\phi D\frac{n}{m}$ из модулей $D=(2\phi^3)^{-1}$, $n=\sqrt{4+\phi^4+4\phi^6}$ и $m=\sqrt{4+\phi^4}$, который можно вынести за поле таблицы Б* вправо, как и общие множители Dk и ϕD чисел первой и третьей строк. И после выноса и нормировки элементов строк членами последнего столбца в ячейках среднего останутся радикалы степени числа $3/\alpha$, где $\alpha=1+\phi^2$.

noche	выноса

1^{-1} $3m^{-0.5}$ 3^{-1} $3^{+0.5}$ $\alpha^{-0.5}$ $3^{-0.5}$ $\alpha^{-0.5}$ $\alpha^{-0.5}$ $\alpha^{-0.5}$ $\alpha^{-0.5}$

после нормировки

Dk	3	$(3/\alpha)^{0.5}$	1
$pD\frac{n}{m}$	3	$(3/\alpha)^{0.5}$	1
φD	3	$(3\alpha)^{0.5}$	1

И радикалы той же степени останутся в ячейках после нормировки итогов выноса числами нижней строки.

после выноса

$\frac{k}{\varphi}$	$\frac{k}{\varphi m}$	$\frac{k}{3\varphi}$
$\frac{n}{m}3^{+0.5}$	$\frac{n}{m}\alpha^{-0.5}$	$\frac{n}{m}3^{-0.5}$
3+0.5	$\alpha^{-0.5}$	3 ^{-0.5}
φD	φD	φD

после нормировки

$\left(\frac{N-3}{M-3}\right)^{0.5}$	$ \Phi\left(\frac{K}{M-3}\right)^{0.5} $	$\Phi\left(\frac{K}{\underline{M}}\right)^{0.5}$
$\frac{n}{m}$	$\left(\frac{n^2}{m^2}\right)^{0.5}$	$\left(\frac{N}{M}\right)^{0.5}$
1	1	1

Пусть $k^2=K$, $m^2=M$ и $n^2=N$. Тогда, с учетом связи $M=3\alpha=3(1+\phi^2)$ и $\underline{M}=3(\alpha-1)=3\phi^2$ нормирующих модулей $M=4+\phi^4$ и $\underline{M}=1+\phi^4$ с модулем $\alpha=3-\Phi=1+\phi^2$ запишем двойное отношение $\frac{K}{\underline{M}}:\frac{N}{M}$ в виде числа $C^{+1}=\frac{1+2\phi^6/(2^{-1}+\phi^4/2)}{1+2\phi^6/(2^{+1}+\phi^4/2)},$

изменяющего положительную степень +1 на отрицательную -1 при смене знаков показателей степени числа 2 в круглых скоб-ках. А так как $C^{+1} = 5^{-0.5} \phi$, то образуется цепное тождество

$$C^{\pm 1} = \frac{1}{3 + \varphi} = \frac{1}{\Phi^2 + 1} = \frac{\varphi^1}{2 + \varphi^3} = \frac{\varphi^2}{1 + \varphi^2} = \frac{\varphi^3}{1 - \varphi^4} = \frac{1 + 2(A/B)/(2^{-1} + \varphi^4/2)}{1 + 2(A/B)/(2^{+1} + \varphi^4/2)}$$

со свойством инверсии элементов, физическую значимость которого подчеркивает то, что

1) скаляр
$$\frac{\varphi^2}{1+\varphi^2} = \frac{\varphi^3}{1-\varphi^4} = \frac{5-5^{0.5}}{10} = {}_5h^2$$
 - это квадрат высоты ${}_5h$

равнореберных пирамид, отсекаемых от вершин икосаэдра $\rm M_3$ с длиной ребра, равной 3, в результате чего образуется усеченный

икосаэдр У $И_{\rm ББ}$ с ребрами единичной длины, ошибочно принимаемый формой пространственного расположения атомов углерода в молекуле фуллерена С60;

- 2) модули $A=1-2\phi^3$ и $B=1+2\Phi^3$ в отношении $A{:}B=\phi^6$ таковы, что A+B=10;
- 3) член $\frac{\varphi^4}{2}$ = 0.072949... в круглых скобках инверсного модуля

 $C^{\pm 1}$ близок к числу 0.007297..., тождественному постоянной тонкой структуры 1/137.035999..., увеличенной в 10 раз, что является арифмометрическим фактом физического порядка, как

и отношение $\frac{a^*}{b^*}$ = 0.97... сторон кластеров 5- и 6-угольной

формы, соответствующее данным измерений ($a^* = 1.39$ Å и $b^* = 1.44$ Å) с некоторой точностью, увеличению которой препятствует принцип неопределенности.

Итак, элементарными приемами выделены скаляры

$$\begin{split} a_2 &= \sqrt{M} = \frac{\varphi}{\sqrt{1 + \varphi^2 + \varphi^4 + \varphi^6}} = \frac{1}{\sqrt{4 + \varphi^4}}\,, \\ 5h &= \sqrt{\frac{5 - \sqrt{5}}{10}} = \sqrt{\frac{\varphi^2}{1 + \varphi^2}} = \sqrt{\frac{\varphi^3}{1 - \varphi^4}} = \sqrt{\frac{1 - \varphi^3}{2(1 + \varphi^2)}} = \sqrt{\frac{\varphi(1 - \varphi^3)}{2(1 - \varphi^4)}} \ \mathbf{H} \\ C^{\pm 1} &= \frac{\varphi^1}{2 + \varphi^3} = \frac{\varphi^2}{1 + \varphi^2} = \frac{\varphi^3}{1 - \varphi^4}\,, \end{split}$$

представленные модулями из степеней числа $\phi = 0.618...$ При этом значения $a_2 = 0.491123...$ ребра усеченного икосаэдра УИ $_2$ и высоты $_5h = 0.525731...$ равнореберных пирамид, отсеченных от икосаэдра И $_3$ с ребрами длиной 3 определены модулями с корнями, дерадикализация (возведение в квадрат) которых дает

$$M = \frac{1^2}{4 + \phi^4}$$
 и $_5h^2 = \frac{\phi^2}{1 + \phi^2} = \frac{\phi^3}{1 - \phi^4} = \frac{1 - \phi^3}{2(1 + \phi^2)} = \frac{\phi(1 - \phi^3)}{2(1 - \phi^4)}$. При

этом выражения для квадратичного числа $_5h^2$ подразумевают

тождества
$$1 = \frac{2\phi^2}{1-\phi^3}$$
 и $1 = \frac{1-\phi^2}{\phi}$, откуда $1^2 = 2\phi^2 + \phi^3$ и

 $1^1 = \phi^1 + \phi^2$, что при сложении дает $\phi^1 = \phi^2 + \phi^3$.

Но единицы 1^1 и 1^2 семантически не тождественны и, кроме того, следует учесть степенную двойственность числа ϕ^3 , такого, что с одной стороны $\phi^3 = \phi^1 - \phi^2$, тогда как с другой $\phi^3 = (\phi/\Phi)^1 - (\phi/\Phi)^2$, где $\phi/\Phi = \phi^2$ входит в инверсный модуль $C^{+1} = \frac{1+2(\phi/\Phi)^3/(2^{-1}+\phi^4/2)}{1+2(\phi/\Phi)^3/(2^{+1}+\phi^4/2)}$, содержащий переменную $2^{\pm 1}$.

Как видно, в модульном описании усеченных икосаэдров $\mathrm{Y}\mathrm{U}_1$, $\mathrm{Y}\mathrm{U}_2$ и $\mathrm{Y}\mathrm{U}_3$ (*см. таблицу* A) выделяются члены, требующие интерпретации на основе физических качеств молекулы фуллерена C60, представленных неравенством измеренных расстояний между его атомами в 5- и 6-угольных кластерах, а также близостью скаляра $\frac{\phi^4}{2} = 0.072949...$ к удесятеренному значению постоянной тонкой структуры 0.007297... = 1/137.035999...

Заметим, что в центральной ячейке таблицы Б представлен радиус $_5r_2$ сферы, касающейся 5-угольных граней усеченного икосаэдра УИ $_2$ с ребром $a_2=(4+\phi^4)^{-0.5}$. При этом модуль $4+\phi^4=M$ нормирует число $N=4+\phi^4+4\phi^6$ в $\frac{n}{m}=\frac{\sqrt{4+\phi^4+4\phi^6}}{\sqrt{4+\phi^4}}$,

дерадикализация которого дает модуль $\frac{N}{M} = N^* = 1 + \frac{4\phi^6}{4+\phi^4}$, где

скаляр N^* выражает отношение радиусов ${}_5r_2$ и ${}_6r_2$ в квадрате. А так как их разность ${}_5r_2^2-{}_6r_2^2=\frac{\phi^2}{(1+\phi^2)(4+\phi^4)}$, где $\frac{\phi^2}{1+\phi^2}={}_5h^2$, а

 $\frac{1^2}{4+\phi^4} = a_2^2$, то получается, что квадраты геометрических харак-

теристик ${}_5r_2,\ {}_6r_2,\ a_2$ и ${}_5h$ связаны тождеством ${}_5r_2^2-{}_6r_2^2=a_2^2\cdot{}_5h^2$, откуда $4a_2^2=\frac{N^*-1}{\phi^6}=c^{+1}=0.964809...$ - число меньше единицы.

Вместе с обратным скаляром $c^{-1}=1.036474\dots$ подставим его в выражения $a=\frac{c^{+1}+1}{2}$ и $b=\frac{c^{-1}+1}{2}$, считая $a=0.982405\dots$ и $b=1.018237\dots$ аналогами межатомных расстояний $a^*=1.39$ Å и $b^*=1.44$ Å в молекуле фуллерена C60 хотя бы потому, что отношение $\frac{a}{b}=0.965\dots$ близко к $\frac{a^*}{b^*}=0.97\dots$

Таким образом, «самая красивая молекула» оказывается физическим объектом, который апробирует так называемую «золотую пропорцию» через «бриллиантовый ключ», утверждающий двойственный характер первой и второй степеней оснований в тождествах $\phi^3 = \phi^1 - \phi^2$ и $\phi^3 = (\phi/\Phi)^1 - (\phi/\Phi)^2$, где $\phi/\Phi = \phi^2$.

Итак, числовое выражение $a_2^2 = \frac{5r_2^2 - 6r_2^2}{5h^2}$, кажущееся бес-

смысленным геометрически, позволяет сосчитать ребра a и b фигуры УИ_{нР}. При этом усеченный икосаэдр с неравными ребрами является приближенной формой пространственного распределения шестидесяти атомов углерода ¹³С, положения которых в принципе не могут быть зафиксированными как точки.