С.Л. Василенко

Цикличность динамического хаоса в аддитивно-рекуррентных последовательностях

Счет – есть игра, а числа в ней – актеры, Где всем давно прописанные роли Рождают будущего миг ...

Числа — наиболее древние письменные знаки и как элементы семантического кода применялись для описания процессов в окружающем мире.

Возникшие еще в стародавние времена как элементы-кирпичики мироздания, они и по сей день служат базовой схемой практически любого количественного описания (построения) предметов и явлений.

Числа часто воспринимаются не просто как фиксированная застывшая форма, но и нечто большее, – вплоть до отнесения на их счет магических признаков.

Производя вычисления с нетривиальными множествами объектов, человек для обозримости результата и просто удобства стал давно употреблять различные схемы "свертывания" числовой информации.

История данного вопроса восходит к глубокой древности.

1. Прошлое – реализованное будущее, так и не ставшее по настоящему настоящим.

Первый, ... пятый, "мятый", шестой, девятый, ...

В ранних алфавитах числа обычно обозначались буквами (знаками). Впервые применять буквы для счета, вероятно, стали александрийские грамматики для нумерации песен «Илиады», которую они разбили на 24 части¹.

Наиболее распространенная система счисления 10-ричная (децимальная), которая в определенной мере является случайной в результате наличия пятипалой человеческой руки.

Так, в русском языке с пятью связаны слова "пядь, пята, пятерня".

Но уже в папуасском языке пределом счета является 20 – "весь человек", число 40 – "два человека" и т.д.

В австралийском языке аранта система счета основана на двоичном принципе.

У юкагиров система счета основана на тройках.

Еще более редкая система счисления, образованная на 4, встречается в папуасском языке кева и основана на том, что большой палец руки считается отдельно.

Кстати, в старославянском языке четыре пальца руки тоже звали "перстами", а большой палец именовался просто "пальцем".

Пятеричная (квинарная) система счисления известна кхмерскому и шумерскому языкам.

Счет шестерками представлен в папуасских языках.

Из сохранившихся языков рудименты семеричной системы счета сохранились у кетов (енисейские языки).

В древних рунах² нашло отражение нумерологическое сокращение по модулю 8.

Восьмеричная система счисления отмечена также в языке индейцев юки (Калифорния) и предположительно в протоиндоевропейском языке, где следующее числительное 9 отождествляют уже с английским *new* "новый".

Остаточные явления 12-ричного счета замечены, например, в немецком и английском языках: elf/eleven (11) и zwölf/twelve (12).

13-ричная система счисления применялась индейцами майя в календаре: 13 дней в

неделе (по сути, на современном языке математики это сокращение чисел по модулю 13). Известен также большой цикл 13 по 144000 дней. Кстати, он заканчивается в 2012 г.

Неделя инков была 9-дневной. В календарной калькуляции майя также не было последовательности: от 1 до 300 считали двадцатками, затем базовым было число 360 (столько дней в году), затем 360, помноженное на 20 и т.д.

Второй по распространенности является 20-ричная (вигезимальная) система счисления, распространенная среди гипотетической эускаро-кавказской семьи языков: в грузинском, адыгейском баскском. Ацтеки изображали единицу рисунком пальца, 20 – в форме флажка, 400 – веткой дерева, 800 – иероглифом сумки.

Античные скандинавы применяли "урезание" по модулю 24.

В шумерском языке существовала и система счисления, основанная на основе 60. Вавилоняне за две тысячи лет до нашей эры знали 60- и 10-ричную системы счета и основы той цифровой системы, которой под именем арабской мы пользуемся ныне.

"Свертывание" числовой информации. Значительно позже (в конце средних веков) подобные вопросы стали увязываться с поиском и исследованием периодических закономерностей в числовых рядах.

Например, наиболее простая классическая аддитивная рекурсия, как правило, порождает возрастающие числовые последовательности, близкие по своим свойствам к геометрической прогрессии.

Периодические свойства подобным рядам не свойственны.

Вместе с тем после несложных преобразований тем или иным способом могут проявляться весьма любопытные скрытые периодичности.

Применительно к широко известным числам Фибоначчи еще в 60-х годах прошлого столетия математики упорядочили и развили известные разрозненные знания в этой сфере на единой общей теоретической основе.

Так, в работе [1] была установлена периодичность таких последовательностей по модулю m (Fibonacci Sequence Modulo m).

Составлены таблицы различных последовательностей [2–3], а сами значения периодов названы [3] периодами Пизано и зафиксированы в математической энциклопедии³.

Для m = 1, 2, 3, ... они равны 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, ... (Sloane's [4] A001175), и сравнительно давно были отражены в справочнике [5].

Применительно к нумерологическому исчислению речь идет о числовых рядах по модулю 9 или (mod 9) с периодом 24, что равносильно "свертыванию" чисел по теософской редукции (Num-суммированию) через многократное сложение цифр, до одной конечной.

Это как раз то самое, скажем не очень частое стечение обстоятельств, когда предметы исследования обычной и эзотерической математики практически совпадают.

Данная тема продолжает развиваться.

Довольно широкое описание числовых рядов по модулю m можно найти в [6].

Известные нам русскоязычные исследования в этом направлении соотносятся лишь с последним десятилетием [7–9].

И если в работах [7, 8], в основном фиксируются (описываются) уже известные сведения, то в статье [9] достаточно глубоко и разносторонне анализируются скрытые закономерности на основе специфического аппарата эзотерической математики с представлением целого ряда интересных обобщающих выводов. — За исключением разве что элементов новизны в части базового нумерологического ряда и его периодичности в 24 шага, установленных американскими математиками около полувека назад.

2. Общие сведения или краткий «ликбез⁴ для чайников».

<u>Определение.</u> F(mod m) — последовательность Фибоначчи по модулю m или неотрицательные остатки от деления членов исходного ряда на m.

Напомним [10]: целые числа a и b называются сравнимыми по модулю m, если: их разность делится без остатка на m или остатки при делении на m одинаковы.

Записывается так: $a = b \pmod{m}$. Слово "модуль" происходит от лат. modulus (мера).

Таким образом, последовательность чисел Фибоначчи по модулю m сводится к последовательному суммированию чисел (t = 2, 3, ...)

$$F_t = (F_{t-1} + F_{t-2}) \pmod{m}$$

с заданными (принятыми) начальными условиями (F_0 , F_1), не равными одновременно нулю.

<u>Утверждение 1</u>. F(mod m) – является периодической последовательностью.

Это следует естественным образом из двух следующих положений [6]:

- при взятии модуля m возможно только $m^2 1$ пар остатков, поэтому некоторые пары в процессе реализации F(mod m) рано или поздно должны повториться;
- любые два элемента F(mod m) полностью определяют всю последовательность, поскольку два элемента ряда дают в рекурсии однозначно следующий третий элемент.

Обозначим через T = T(m) период числового ряда F(mod m)

 $\underline{Teopema}$. Для $m \ge 3$, период T = T(m) – четный.

Доказательство. Положим для определенности $(F_0, F_1) = (0, 1)$.

Тогда $F_1 = F_{1+T} = F_{1-T} = F_{T-1} = 1$ или $F_{-(T-1)} = F_{T-1}$.

С учетом известного в теории чисел Фибоначчи соотношения $F_{-k} = (-1)^{k+1} F_k$, равенство $F_{-(T-1)} = F_{T-1}$ обеспечивается только для нечетных значений k = T-1, откуда и следует четность T = T(m).

<u>Утверждение 2</u>. Для простого числа p с целой степенью $\alpha > 0$ верно: $T(p^{\alpha}) = p^{\alpha - 1} \cdot T(p)$. Пример. $T(27) = T(3^3) = 3^2 \cdot T(3) = 9 \cdot 8 = 72$; $T(81) = T(3^4) = 3^3 \cdot T(3) = 27 \cdot 8 = 216$.

3. Восстановление статус-кво в периодичности Num-суммы чисел Фибоначчи.

а) Сначала рассмотрим последовательность F(mod 3): 0 1 1 2 0 2 2 1.

Ее период равен максимально возможному значению $T(3) = 3^2 - 1 = 8$.

Больше 8 он просто не может быть, так как всего имеется m^2 пар остатков за вычетом единицы, соответствующей запрещенной паре (0,0), не способной к генерации чисел по аддитивной двухчленной рекурсии.

Но и меньше 8 период тоже никак не получается (простым перебором) чисто физически, поскольку это одновременно минимальное количество шагов, необходимых на "раскрутку" периодичности.

б) Непосредственно из утверждения 2 следует, что $T(9) = T(3^2) = 3^1 \cdot T(3) = 3 \cdot 8 = 24$.

Это и объясняет, почему Num-сумма (теософская редукция) чисел Фибоначчи имеет периодичность 24. Формализованное доказательство имеет вид:

$$F(\text{mod }3) = (0\ 1\ 1\ 2\ 0\ 2\ 2\ 1) \rightarrow T(3) = 8; \ T(9) = T(3^2) = 3 \cdot T(3) = 24.$$

Можно обосновать и по-другому.

В описании числовой последовательности в энциклопедии Н.Слоэна [4] А007887 приведена формула (O.Wittenberg, 2004) для F(mod 9) – чисел Фибоначчи по модулю 9:

$$F_{k+24} = F_k + 9 \cdot (5152 \cdot F_{k+1} + 3184 \cdot F_k).$$

Но если к числу F_k прибавить другое число, умноженное на 9, то его Num-сумма не изменяется, откуда следует $N(F_{k+24}) = N(F_k)$, что эквивалентно периодичности T(9) = 24.

Таким образом, в продолжение работы [11], обоснование периодичности T(9) = 24 для F(mod 9) можно считать законченным и полностью аргументированным.

Что хотелось бы добавить в этой связи? — Сегодня трудно говорить, как человек пришел к идее "модульных" преобразований чисел Фибоначчи. Однако нам представляется, что не последнюю, а возможно и главную роль здесь сыграла именно теософская редукция или Num-суммирование чисел, которые в последующем подтолкнули математиков расширить это действо с 9 на произвольное целое значение модуля $m \ge 2$.

4. Расширение числовой мозаики.

Ряд Фибоначчи стал основой для формирования целого направления в теории чисел, изучающей закономерности целых чисел.

Кроме того, он служит теоретическим подспорьем обоснования золотой пропорции.

Идея аддитивно-двухчленной рекурсии, в частности, получила дальнейшее развитие в самых неожиданных числовых интерпретациях, когда предметом рекуррентного суммирования стали не только сами числа Фибоначчи, но и их модификации-представления.

Рассмотрим, например, реверсивную функцию (реверс-число) или запись натурального числа в обратном порядке

$$R(x) \equiv Rx = R(\alpha_n ... \alpha_0) = \alpha_0 ... \alpha_n$$

где α_k – цифры исходного числа x; индекс k = 0, 1, ..., n.

В реверсном представлении запись числа начинается с младшего разряда.

Ограничимся позиционной десятеричной системой счисления.

Функция R(x) легко реализуется на компьютере:

$$n = \text{trunc}(\lg x); \ R = 0; \ \text{for } k = 0..n: \ R = R + (\text{trunc}(x) \cdot 10^k) \pmod{10} \cdot 10^{n-k}.$$

где trunc(ξ) – целая часть числа ξ .

Например, R(12345) = 54321; n = 4.

Теперь с помощью реверсивной функции по схеме Фибоначчи можно образовать четыре различные аддитивные последовательности (табл. 1) по одной из формул:

$$f_t = \{ R(a) + R(b); R(a+b); R(a) + b; a + R(b) \},$$
 (1)

где $(a, b) \equiv (f_{t-1}, f_{t-2}).$

Числовые ряды, образуемые по такой модели, нашли отражение в энциклопедии Н.Слоэна [4] (А001129, А014258–А014260).

Но удивительным являются не столько эти последовательности сами по себе, сколько их периодические свойства по теософской редукции или (mod 9).

Оказывается, что все эти числовые ряды также имеют 24-шаговую периодичность по модулю 9 (табл. 1) независимо от начальных условий или затравочных чисел.

Это объясняется тем, что $x \pmod 9$ совпадает с теософской редукцией или нумерологической суммой N(x), которая определяется набором цифр и не зависит от порядка их следования [11].

Причем целочисленная арифметическая функция N(x) аддитивна, то есть

$$N(a + b) = N\{N(a) + N(b)\}.$$

Поэтому, как бы мы не меняли порядок следования цифр в двух соседних числах, их сумма все равно приведет к третьему числу с одинаковым значением по (mod 9).

Исходя из этого, аналогичным образом можно реализовать и другие алгоритмы.

Например, введем функцию сортировки цифр по возрастанию (сорт-1)

$$I(x) \equiv Ix = I(\alpha_n ... \alpha_0) = \beta_n ... \beta_0,$$

и соответственно по убыванию (сорт-2)

$$D(x) \equiv Dx = D(\alpha_n ... \alpha_0) = \gamma_n ... \gamma_0,$$

где $\{\beta\} = \{\alpha\}$ и $\{\gamma\} = \{\alpha\}$ – отсортированные в порядке возрастания (*increase*) и убывания (*decrease*) цифры α_k исходного числа x так, что $\beta_n \leq ... \leq \beta_0$ и $\gamma_n \geq ... \geq \gamma_0$.

Таблица 1 Аддитивно-двухчленные последовательности f_t с реверсом $\mathbf R$ и периодом по (mod 9) $f_t = (f_{t-1} + f_{t-2}) (\text{mod } 9), \quad (f_0, \ f_1) = (\ 0, \ 1), \quad (a, b) \equiv (f_{t-1}, \ f_{t-2})$

4	Ra + Rb	R(a+b)	Ra+ b	a + Rb	mod 9
t	A001129	A014258	A014259	A014260	mod 9
0	0	0	0	0	0
1	1	1	1	1	1
2	1	1	1	1	1
3	2	2	2	2	2
4	3	3	3	3	3
5	5	5	5	5	5
6	8	8	8	8	8
7	13	31	13	13	4
8	39	93	39	21	3
9	124	421	106	52	7
10	514	415	640	64	1
11	836	638	152	89	8
12	1053	3501	891	135	0
13	4139	9314	350	233	8
14	12815	51821	944	764	8
15	61135	53116	799	1096	7
16	104937	739401	1941	1563	6
17	792517	715297	2290	8464	4
18	1454698	8964541	2863	12115	1
19	9679838	8389769	5972	16763	5
20	17354310	1345371	5658	67884	6
21	9735140	415379	14537	104645	2
22	1760750	570671	79199	153521	8
23	986050	50689	113734	699922	1
24	621360	63126	516510	825273	0
25	113815	518311	129349	1055269	1
26	581437	734185	1460431	1427797	1

Тогда по аналогии с формулами (1) можно организовать "движение чисел" по следующим рекуррентным схемам (табл. 2):

1	2	3	4	
Ia + Ib	I(a+b)	Ia + b	a + Ib	(2)
Da + Db	D(a+b)	Da + b	a + Db	(3)

Понятно, что периодичность значений теософской редукции не изменится при различных комбинациях сортировки цифр, слагающих суммируемые числа.

Более того, такая сортировка может быть просто хаотической или псевдослучайной. Результат по-прежнему сохраняется.

Аддитивно-двухчленные последовательности с сортировкой цифр и периодичностью T=24 по модулю 9

t	Cop	тиро	вка-1	(рост)		Сортировка-2 (убывание)		mod 9
ι .	1	2	3	4	1	2	3	4	mod 9
1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1
3	2	2	2	2	2	2	2	2	2
4	3	3	3	3	3	3	3	3	3
5	5	5	5	5	5	5	5	5	5
6	8	8	8	8	8	8	8	8	8
7	13	13	13	13	13	31	13	13	4
8	21	12	21	21	39	93	39	21	3
9	25	25	25	34	124	421	106	52	7
10	37	37	46	46	514	541	649	73	1
11	62	26	71	80	962	962	1070	125	8
12	63	36	63	126	1503	5310	7749	198	0 (9)
13	62	26	107	134	6272	7622	10844	719	8
14	62	26	80	260	12932	93221	92159	1700	8
15	52	25	115	394	100843	843100	110365	2671	7
16	51	15	195	420	936321	963321	745269	9771	6
17	40	4	274	769	1806421	8642110	1086907	17392	4
18	19	19	442	793	9605431	9654310	10621369	27163	1
19	23	23	518	1472	18296420	98642210	97719017	124484	5
20	42	24	600	1851	108296520	986522100	110398479	200805	6
21	47	47	524	3098	1085164310	8654311100	1096462127	1045226	2
22	71	17	845	4256	9640833200	9864332000	9876820589	1897226	8
23	64	46	982	4645	18518643100	88654311100	11085338647	8439436	1
24	63	36	1134	7101	98518643100	98865431100	98642253699	18315657	0 (9)
25	82	28	2116	11557	187519742200	987754221100	111071992969	28180090	1
26	64	46	2260	11674	1086619652200	9866652211000	1098618464809	115835401	1

Подобные способы "движение чисел" можно организовать и для более сложных последовательностей с тремя и более аддитивными слагаемыми по различным рекуррентным схемам (табл. 3).

Таблица 3 Примерные комбинации реверсного и сортировочного "движение чисел" по аддитивно-трехчленной рекурсии (Трибоначчи)

1	a+b+c	a+b+Rc	a+Rb+c	a+Rb+Rc	Ra+b+c	Ra+b+Rc	Ra+Rb+c	Ra+Rb+Rc
	A000073	A102111	A102112	A102113	A102114	A102115	A102116	A102117
2	R(a+b+c)	R(a+b+Rc)	R(a+Rb+c)	R(a+Rb+Rc)	R(Ra+b+c)	R(Ra+b+Rc)	R(Ra+Rb+c)	R(Ra+Rb+Rc)
	A102118	A102119	A102120	A102121	A102122	A102123	A102124	A102125
3	a+b+c	a+b+Ic	a+Ib+c	a+Ib+Ic	<i>Ia+b+c</i>	<i>Ia+b+Ic</i>	Ia+Ib+c	Ia+Ib+Ic
4	<i>I</i> (<i>a</i> + <i>b</i> + <i>c</i>)	<i>I</i> (<i>a</i> + <i>b</i> + <i>Ic</i>)	<i>I</i> (<i>a</i> + <i>Ib</i> + <i>c</i>)	<i>I</i> (<i>a</i> + <i>Ib</i> + <i>Ic</i>)	<i>I</i> (<i>Ia</i> + <i>b</i> + <i>c</i>)	<i>I</i> (<i>Ia</i> + <i>b</i> + <i>Ic</i>)	<i>I</i> (<i>Ia</i> + <i>Ib</i> + <i>c</i>)	I(Ia+Ib+Ic)
5	<i>R</i> (<i>a</i> + <i>b</i> + <i>c</i>)	R(a+b+Ic)	R(a+Ib+c)	R(a+Ib+Ic)	<i>R</i> (<i>Ia</i> + <i>b</i> + <i>c</i>)	R(Ia+b+Ic)	R(Ia+Ib+c)	R(Ia+Ib+Ic)
6	D(a+b+c)	D(a+b+Rc)	R(a+Db+c)	R(a+Ib+Dc)	<i>I</i> (<i>Ra</i> + <i>b</i> + <i>c</i>)	I(Ra+b+Dc)	I(Ra+Db+c)	D(Ia+Rb+Ic)

Примечательно, что и в этих случаях сохраняются периодические свойства последовательностей по (mod 9), что наглядно видно на примере рядов Трибоначчи с явным проявлением периода в 39 шагов (табл. 4 — табл. 5) при самых разных способах манипулирования с числами и их экзотическими цифровыми конструкциями.

Здесь у нас и реверс, и сортировки цифр (по возрастанию или убыванию), причем в самых разных нетривиальных комбинациях.

Тем не менее, конечный результат одинаково стабилен: налицо устойчивое и постоянное проявление 39-шагового цикла.

Таким образом, в целом можно вести речь об уникальных периодических свойствах организуемого детерминированного хаоса в аддитивно-рекуррентных числовых последовательностях.

4. Осмышлизмы.

Проведенные числовые манипуляции представляют определенный интерес в вычислительном плане и одновременно дают "пищу для ума" в плане интерпретации выявленных закономерностей.

Известно [12], что динамический хаос – явление, при котором поведение нелинейной динамической системы выглядит случайным, хотя и определяется детерминистическими законами. В классическом варианте причиной появления хаоса обычно является неустойчивость (повышенная чувствительность) по отношению к начальным условиям, когда их малое изменение приводит со временем к сколь угодно большим изменениям динамики системы.

В нашем случае затравочные числа (начальные условия) как раз мало влияют на периодичность. Динамический хаос возникает из-за постоянного перемешивания разрядов чисел. Хотя на конечный результат в виде периодического "колебания" системного модуля 9 это не оказывает никакого влияния.

Система как бы запрограммирована на конечный результат, и никакие внутренние процессы не способные видоизменить "выходной сигнал".

В этом контексте такая числовая модель-игрушка может вполне служить неким прообразом эволюции Вселенной, когда множество, казалось бы, случайных факторов (у нас цифр) в своем интегральном исполнении вырисовывают вполне детерминированную траекторию "движения".

Таким образом, наша числовая модель совершенно не восприимчива к начальным условиям и слабо реагирует на внутренние хаотические процессы "цифропереноса", если так можно выразиться. Нечто похожее на броуновское движение, — только в нашем случае в виде беспорядочного движения цифр как прообразов микроскопических частиц.

В то же время, если изменить количество слагаемых или коэффициенты при них, то начавшаяся периодичность нарушается и привод к возникновению новых циклических свойств, обусловленных новым алгебраическим уравнением и его решением.

Здесь можно провести параллель с таким явлением как бифуркация.

Только источником ее возникновения являются не внутренние процессы, а "толчок извне", что вполне допустимо при рассмотрении небольших системных образований.

Что касается отсутствия в наших рассуждениях строгой академичности, уместным будет напомнить слова В. Владимирова, который частично развеивает сомнения в этой части: «развитие теории должно начинаться с игрушечных моделей.

Причем важно не то, насколько они точно и полно описывают реальность (как правило, совсем не точно), а то, в какой мере они отражают ее фундаментальные свойства» [12, гл. 10, § 2].

	с сортировкой цифр (по возрастанию) и периодичностью $I = 39$ по модулю 9									
t	a+b+c	<i>a</i> + <i>b</i> + <i>Ic</i>	<i>a</i> + <i>Ib</i> + <i>c</i>	a+Ib+Ic	<i>Ia+b+c</i>	Ia+b+Ic	Ia+Ib+c	Ia+Ib+Ic	mod 9	
0	0	0	0	0	0	0	0	0	0(9)	
1	0	0	0	0	0	0	0	0	0(9)	
2	1	1	1	1	1	1	1	1	1	
3	1	1	1	1	1	1	1	1	1	
4	2	2	2	2	2	2	2	2	2	
5	4	4	4	4	4	4	4	4	4	
6	7	7	7	7	7	7	7	7	7	
7	13	13	13	13	13	13	13	13	4	
8	24	24	24	24	24	24	24	24	6	
9	44	44	44	44	44	44	44	44	8	
10	81	81	81	81	81	81	81	81	0(9)	
11	149	149	149	149	86	86	86	86	5	
12	274	274	211	211	193	193	130	130	4	
13	504	441	441	378	306	243	162	99	0(9)	
14	927	864	702	639	315	495	225	180	0(9)	
15	1705	1552	1057	1129	634	841	481	130	4	
16	3136	2560	1525	1876	967	877	535	130	4	
17	5768	4580	2384	3374	1628	2078	728	44	8	
18	10609	8395	4696	6181	2869	1303	1114	70	7	
19	19513	13231	8569	11206	5284	2989	1927	64	1	
20	35890	22084	15622	15721	6955	4480	3121	97	7	
21	66012	38904	26007	18015	13722	3570	3516	132	6	
22	121415	72221	46832	30398	24476	7736	4406	248	5	
23	223317	113373	62721	42813	45144	7695	4923	450	0(9)	
24	410744	189083	112196	47360	52643	13772	6311	416	2	
25	755476	314683	171295	63097	93076	23749	7891	439	7	
26	1389537	617103	345285	78912	101466	42930	7848	540	0(9)	
27	2555757	945675	570060	86058	157185	38475	12888	540	0(9)	
28	4700770	1696246	975913	102526	310120	100987	25567	439	7	
29	8646064	2653288	1321765	121003	259774	42613	46303	439	7	
30	15902591	4805213	2027624	138947	713084	147911	41801	743	5	
31	29249425	8705170	4127104	152326	583372	155881	30061	1045	1	
32	53798080	15746071	5671336	288238	1206436	275845	47587	841	4	
33	98950096	24574699	7811407	545383	1419922	512938	87715	640	1	
34	181997601	40336548	13274178	891627	2912307	515022	91617	339	6	
35	334745777	66056924	19060292	1450073	2748737	770771	75044	533	2	
36	615693474	130850271	38106477	1911420	6680007	656388	103851	720	0(9)	
37	1132436852	200251763	51503354	2051666	5667722	1139714	107432	701	8	
38	2082876103	333558703	71910424	2176372	11685421	1787644	98749	379	1	
39	3831006429	534934044	111351456	2413287	23472297	2943180	164097	423	0(9)	
40	7046319384	869716314	163979289	3762630	39587922	3024612	170010	630	0(9)	

Таблица 5 Аддитивно-трехчленные последовательности с реверсом, промежуточной сортировкой цифр (по возрастанию) и периодичностью T=39 по модулю 9

	coprinposition in the bospacian nitrogram in the bospacian nitrogram is $I = S$ in modystic S											
t	R(a+b+c)	<i>R</i> (<i>a</i> + <i>b</i> + <i>Ic</i>)	R(a+Ib+c)	<i>R</i> (<i>a</i> + <i>Ib</i> + <i>Ic</i>)	R(Ia+b+c)	<i>R</i> (<i>Ia</i> + <i>b</i> + <i>Ic</i>)	<i>R(Ia+ Ib+c)</i>	<i>R</i> (<i>Ia</i> + <i>Ib</i> + <i>Ic</i>)	mod 9			
0	0	0	0	0	0	0	0	0	0(9)			
1	0	0	0	0	0	0	0	0	0(9)			
2	1	1	1	1	1	1	1	1	1			
3	1	1	1	1	1	1	1	1	1			
4	2	2	2	2	2	2	2	2	2			
5	4	4	4	4	4	4	4	4	4			
6	7	7	7	7	7	7	7	7	7			
7	31	31	31	31	31	31	31	31	4			
8	24	24	24	24	42	42	42	42	6			
9	26	26	44	44	26	26	44	44	8			
10	18	36	99	18	99	18	99	18	0(9)			
11	86	68	761	68	761	86	581	68	5			
12	31	31	409	31	292	211	103	31	4			
13	531	531	576	711	9801	612	72	99	0(9)			
14	846	36	6831	297	2421	504	126	81	0(9)			
15	8041	85	7087	724	71311	967	652	31	4			
16	8149	652	1309	211	95332	9031	454	31	4			
17	63071	377	8198	737	19079	1511	728	44	8			
18	16297	7801	42451	6901	244861	52801	5731	7	7			
19	71578	4348	94654	937	978832	8092	9802	46	1			
20	649051	62521	792511	3841	928105	50245	4732	79	7			
21	629637	74076	135978	9834	2826321	50811	7638	231	6			
22	6620531	540041	112343	16511	5039213	29615	72851	842	5			
23	9129987	373626	3460401	84312	5877783	53856	88902	54	0(9)			
24	55108361	443819	3178073	75989	22334411	14366	50132	614	2			
25	97885807	98818	2683033	39499	4304122	19897	57967	934	7			
26	551421261	403677	2127726	647901	83543382	33876	619641	45	0(9)			
27	924514407	489636	7619355	997047	12137994	14076	85122	45	0(9)			
28	5741283751	202219	56052511	5276401	30328099	24235	498481	934	7			
29	9149127127	235627	61953595	9788335	57251959	99007	887677	934	7			
30	58252941851	535487	60589607	1070699	29812055	10562	997709	347	5			
31	92725334137	343387	718791031	5513554	74650888	806221	8624521	5401	1			
32	511304721061	1442011	514113187	2428888	20913619	92632	4420912	148	4			
33	940799282266	6790312	385048585	2421973	246685501	648928	6274432	46	1			
34	4647339284451	1085658	4914794121	6146106	571020801	987153	73418901	933	6			
35	8777823449906	4127897	6913643645	3748169	896117762	680708	8610977	335	2			
36	32661026956341	4327335	9207311148	4136805	190473039	380421	107757	27	0(9)			
37	89609698168064	290168	83916565451	628955	2633748641	548828	76420637	107	8			
38	113475845840131	2925685	58834414909	2130112	9747300232	790336	13437901	973	1			
39	635469075647532	139455	64728278397	9630252	9546556482	558495	3197853	324	0(9)			
40	727556916455838	9287703	747203989941	4617999	26550662841	3181941	50998887	36	0(9)			

Выводы.

- 1. Теософская редукция (Num-суммирование) чисел Фибоначчи эквивалентна операнду по модулю m=9 и приводит к периоду: $T(9)=T(3^2)=3\cdot T(3)=3\cdot 8=24$.
- 2. Цикличность различных аддитивно-рекуррентных числовых последовательностей по (mod 9) не зависит от вносимой динамики хаоса в перестановке цифр суммируемых чисел.
- 3. Проанализированные числовые манипуляции и им подобные могут служить "игровой моделью-прообразом" динамико-детерминированного развития процессов во Вселенной на основе теории динамического хаоса.

Литература.

- 1. Wall D.D. Fibonacci Series Modulo m // American Mathematical Monthly. 67, 525–532, 1960.
- 2. Shah A.P. Fibonacci Sequence Modulo m // Fibonacci Quarterly. 6, 139–141, 1968.
- 3. Wrench J.W. Review of B.H. Hannon and W.L. Morris. Tables of Arithmetical Functions Related to the Fibonacci Numbers // Math. Comput. 23, 459–460, 1969.
- 4. *Sloane N.J.A.* The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/~njas/sequences.
 - 5. Sloane N. J. A. A Handbook of Integer Sequences. New York: Academic Press, 1973.
- 6. *Renault M*. The Fibonacci Sequence Modulo *m*. 1996. http://www.math.temple.edu/~renault/fibonacci/fib.html.
 - 7. Сергиенко П.Я. Триалектика. Святая Троица как символ знания. Пущино, 1999. 82 с.
- 8. *Каменская В.Г.*, *Зверева С.В.* Ряд Фибоначчи и его странные свойства: фрактальные и нумерологические характеристики // Сознание и физическая реальность. -2001. № 5. С. 17–30. http://www.numbernautics.ru/content/view/314/35/.
- 9. *Корнеев А.А*. Структурные тайны золотого ряда // Академия Тринитаризма. М.: Эл. № 77-6567, публ.14359, 21.04.2007. http://www.trinitas.ru/rus/doc/0232/009a/02321047.htm.
- 10. Виленкин Н. Сравнения и классы вычетов // Квант. 1978. № 10. С. 4—8. http://kvant.mirror1.mccme.ru.
- 11. Василенко С.Л. Периодичность теософской редукции для линейных возвратных последовательностей // Академия Тринитаризма. М.: Эл. № 77-6567, публ.15368, 27.06.2009. http://www.trinitas.ru/rus/doc/0232/009a/02321130.htm.
- 12. *Управление риском*. Риск, устойчивое развитие, синергетика / В.А. Владимиров, Г.Г. Малинецкий, А.В. Подлазов и др. М.: Наука, 2000. 432 с. http://www.keldysh.ru.

© ВаСиЛенко, 2010

¹ И. Карасев. – http://www.rbardalzo.narod.ru.

² Рунический алфавит является отражением горизонтальной и вертикальной организации пространства, а общее число этих знаков 24=3·8. Восьмичленность рунических отделов указывает, вероятно, на горизонтальное деление пространства на 8 сторон света. Рунический алфавит – это некое сакральное пространство, в котором первая буква символизирует жизнь, а последняя – смерть // Руны старшие. – http://www.rbardalzo.narod.ru/4/run_st.html.

³ Wolfram MathWord. – http://mathworld.wolfram.com/PisanoPeriod.html.

⁴ Ликбез – <u>лик</u>видация <u>без</u>грамотности в Советской России; в переносном смысле – обучение неподготовленной аудитории базовым понятиям какой-либо науки, процесса или явления.