Напечатать документ Послать нам письмо Сохранить документ Форумы сайта Вернуться к предыдущей
АКАДЕМИЯ ТРИНИТАРИЗМА На главную страницу
Дискуссии - Наука

Петухов С.В.
Солитоны в кооперативных биологических процессах надмолекулярного уровня
Oб авторе

Эта статья опубликована в ежегодном сборнике журнала «Дельфис»: «Этика и наука будущего», Москва, 2003, с. 187-190.

Аннотация. Доклад посвящен возможностям солитонного подхода в надмолекулярной биологии, прежде всего, для моделирования широкого класса естественных волнообразных и колебательных движений в живых организмах. Автором выявлено множество примеров существования солитоноподобных надмолекулярных процессов («биосолитонов») в локомоторных, метаболических и иных явлениях динамической биоморфологии на самых разных линиях и уровнях биологической эволюции. Под биосолитонами понимаются, прежде всего, характерные одногорбые (однополярные) локальные деформации, движущиеся вдоль биотела с сохранением своей формы и скорости.

Солитоны, называемые иногда «волновыми атомами», наделены необычными с классической (линейной) точки зрения свойствами. Они способны к актам самоорганизации и саморазвития: автолокализации; улавливания энергии; размножения и гибели; образования ансамблей с динамикой пульсирующего и иного характера. Солитоны были известны в плазме, жидких и твердых кристаллах, классических жидкостях, нелинейных решетках, магнитных и других полидоменных средах, и пр. Обнаружение биосолитонов свидетельствует, что в связи со своей механохимией живое вещество является солитонной средой с разнообразным физиологическим использованием солитонных механизмов. Возможна исследовательская охота в биологии за новыми видами солитонов – бризерами, вобблерами, пульсонами и т.п., выведенными математиками на «кончике пера» и лишь затем обнаруживаемыми физиками в природе. Доклад базируется на монографиях: С.В.Петухов «Биосолитоны. Основы солитонной биологии», 1999; С.В.Петухов «Бипериодическая таблица генетического кода и число протонов», 2001.



Солитоны являются важным объектом современной физики. Интенсивное развитие их теории и приложений началось после опубликования в 1955 году Ферми, Паста и Уламом работы по компьютерному расчету колебаний в простой нелинейной системе из цепи грузиков, связанных нелинейными пружинками. Вскоре были развиты необходимые математические методы, позволяющие решать солитонные уравнения, представляющие собой нелинейные дифференциальные уравнения в частных производных. Солитоны, называемые иногда «волновыми атомами», обладают свойствами волн и частиц одновременно, но не являются в полном смысле ни тем, ни другим, а составляют новый объект математического естествознания. Они наделены необычными с классической (линейной) точки зрения свойствами. Солитоны способны к актам самоорганизации и саморазвития: автолокализации; улавливанию энергии, приходящей извне в «солитонную» среду; размножению и гибели; образованию ансамблей с нетривиальной морфологией и динамикой пульсирующего и иного характера; самоусложнению этих ансамблей при поступлении в среду дополнительной энергии; преодолению тенденции к беспорядку в содержащих их солитонных средах; и пр. Их можно трактовать как специфическую форму организации физической энергии в веществе, и соответственно можно говорить о «солитонной энергии» по аналогии с известными выражениями «волновая энергия» или «вибрационная энергия». Солитоны реализуются как состояния особых нелинейных сред (систем) и имеют принципиальные отличия от обычных волн. В частности, солитоны зачастую представляют собой устойчивые автолокализованные сгустки энергии с характерной формой одногорбой волны, движущейся с сохранением формы и скорости без диссипации своей энергии. Солитоны способны к неразрушающим столкновениям, т.е. способны при встрече проходить сквозь друг друга без нарушения своей формы. Они имеют многочисленные применения в технике.

Под солитоном обычно понимается уединенный волноподобный объект (локализованное решение нелинейного дифференциального уравнения в частных производных, принадлежащего к определенному классу так называемых солитонных уравнений), который способен существовать без диссипации своей энергии и при взаимодействии с другими локальными возмущениями всегда восстанавливает свою первоначальную форму, т.е. способен к неразрушающим столкновениям. Как известно, солитонные уравнения «возникают самым естественным образом при изучении слабо нелинейных дисперсионных систем различных типов в различных пространственных и временных масштабах. Универсальность этих уравнений оказывается настолько поразительной, что многие были склонны видеть в этом нечто магическое… Но это не так: дисперсионные слабо затухающие или незатухающие нелинейные системы ведут себя одинаково, независимо от того, встречаются ли они при описании плазмы, классических жидкостей, лазеров или нелинейных решеток» [1, c.8]. Соответственно, известны солитоны в плазме, жидких и твердых кристаллах, классических жидкостях, нелинейных решетках, магнитных и других полидоменных средах, и пр. (Движение солитонов в реальных средах зачастую не носит абсолютно недиссипативного характера, сопровождаясь малыми потерями энергии, что теоретиками учитывается посредством добавления малых диссипативных членов в солитонные уравнения).

Отметим, что живое вещество пронизано множеством нелинейных решеток: от молекулярных полимерных сеток до надмолекулярных цитоскелетов и органического матрикса. Перестройки этих решеток имеют важное биологическое значение и вполне могут вести себя солитоноподобным образом. Кроме того, солитоны известны как формы движения фронтов фазовых перестроек, например, в жидких кристаллах (см., например, [2]). Поскольку многие системы живых организмов (в том числе, жидкокристаллические) существуют на грани фазовых переходов, то естественно полагать, что фронты их фазовых перестроек в организмах также будут зачастую двигаться в солитонной форме.

Еще первооткрыватель солитонов Скотт Рассел в прошлом веке экспериментально показал [1, c.13], что солитон выступает как концентратор, ловушка и транспортер энергии и вещества, способный к неразрушающим столкновениям с другими солитонами и локальными возмущениями. Очевидно, что эти особенности солитонов могут быть выгодны для живых организмов, а потому биосолитонные механизмы могут специально культивироваться в живой природе механизмами естественного отбора. Перечислим некоторые из таких выгод:

  • - 1) самопроизвольное улавливание энергии, вещества и пр., а также их самопроизвольная локальная концентрация (автолокализация) и бережная, без потерь транспортировка в дозированной форме внутри организма;
  • - 2) легкость управления потоками энергии, вещества и пр. (при их организации в солитонной форме) за счет возможного локального переключения характеристик нелинейности биосреды с солитонного на несолитонный вид нелинейности и обратно;
  • - 3) развязка для множества тех одновременно и в одном месте протекающих в организме, т.е. накладывающихся друг на друга процессов (локомоторных, кровеобеспечивающих, метаболических, ростовых, морфогенетических и пр.), которые нуждаются в относительной независимости своего протекания. Эта развязка может быть обеспечена именно способностью солитонов к неразрушающим столкновениям.

Впервые проведенное нами исследование надмолекулярных кооперативных процессов в живых организмах с солитонной точки зрения выявило наличие в них множества макроскопических солитоноподобных процессов [3]. Предметом изучения явились, прежде всего, непосредственно наблюдаемые локомоторные и иные биологические движения, высокая энергоэкономичность которых давно предполагалась биологами. На первом этапе исследования нами было обнаружено, что у множества живых организмов биологические макродвижения зачастую имеют солитоноподобный вид характерной одногорбой волны локальной деформации, движущейся вдоль живого тела с сохранением своей формы и скорости и иногда демонстрирующей способность к неразрушающим столкновениям. Эти «биосолитоны» реализуются на самых разных ветвях и уровнях биологической эволюции у организмов, различающихся по размерам на несколько порядков величины.

В докладе представлены многочисленные примеры таких биосолитонов. В частности, рассмотрен пример ползания улитки Helix, происходящего за счет пробегания по ее телу одногорбой волнообразной деформации с сохранением своей формы и скорости. Подробные регистрации этого вида биологического движения взяты из книги [4]. В одном варианте ползания (при одной «походке») у улитки реализуются деформации локального растяжения, идущие по опорной поверхности ее тела спереди назад. При другом, более медленном варианте ползания по той же телесной поверхности проходят деформации локального сжатия, идущие в обратном направлении от хвостовой части к голове. Оба названных типа солитонных деформаций — прямой и ретроградный — могут реализовываться у улитки одновременно со встречными столкновениями между ними. Подчеркнем, что их столкновение носит неразрушающий характер, характерный для солитонов. Другими словами, после столкновения они сохраняют форму и скорость, то есть свою индивидуальность: «присутствие больших ретроградных волн не влияет на распространение нормальных и много более коротких прямых волн; оба типа волн распространялись без какого-либо признака взаимного вмешательства» [4, c.432]. Этот биологический факт известен с начала века, хотя до нас никогда исследователями не связывался с солитонами.

Как подчеркивали Gray [4] и другие классики исследования локомоций (пространственных перемещений у организмов), последние являются в высокой степени энергоэкономичными процессами. Это существенно для жизненно важного обеспечения организму возможности перемещаться без утомления на длительные дистанции в поисках пищи, спасения от опасности и т.п. (организмы вообще крайне бережно обращаются с энергией, запасать которую им вовсе не просто). Так, у улитки солитонная локальная деформация тела, за счет которой осуществляется перемещение ее тела в пространстве, происходит только в зоне отрыва тела от поверхности опоры. А вся контактирующая с опорой часть тела является недеформированной и покоится относительно опоры. Соответственно, во все время протекания по телу улитки солитоноподобной деформации такая волнообразная локомоция (или процесс массопереноса) не требует энергетических затрат на преодоление сил трения улитки об опору, являясь в этом плане максимально экономной. Конечно, можно предполагать, что часть энергии при локомоции все-таки диссипируется на взаимное трение тканей внутри тела улитки. Но если эта локомоторная волна является солитоноподобной, то она обеспечивает также минимизацию потерь на трение внутри тела. (Насколько нам известно, вопрос о потерях энергии на внутрителесное трение при локомоциях недостаточно изучен экспериментально, однако, вряд ли организм прошел мимо возможности минимизировать их). При рассмотренной организации локомоции все (или почти все) энергозатраты на нее сводятся к затратам на начальное создание каждой такой солитоноподобной локальной деформации. Именно физика солитонов дает предельно энергоэкономичные возможности обращения с энергией. И ее использование живыми организмами выглядит закономерным, тем более, что окружающий мир насыщен солитонными средами и солитонами.

Нельзя не отметить, что, по крайней мере, с начала века исследователи представляли волнообразные локомоции как некоторый эстафетный процесс. В ту пору «досолитонной физики» естественной физической аналогией такого эстафетного процесса был процесс горения, при котором локальная телесная деформация передавалась от точки к точке подобно поджиганию. Это представление об эстафетных диссипативных процессах типа горения, называемых в наши дни автоволновыми, было наилучшим из возможного в то время и оно давно стало привычным для многих. Однако сама физика не стояла на месте. И в ней в последние десятилетия развилось представление о солитонах как новом типе недиссипативных эстафетных процессов высшей энергоэкономичности с немыслимыми прежде, парадоксальными свойствами, что дает основу для нового класса нелинейных моделей эстафетных процессов.

Одно из важных преимуществ солитонного подхода перед традиционным автоволновым при моделировании процессов в живом организме определено способностью солитонов к неразрушающим столкновениям. Действительно, автоволны (описывающие, например, перемещение зоны горения вдоль горящего шнура) характеризуются тем, что за ними остается зона невозбудимости (сгоревший шнур), а потому две автоволны при столкновении друг с другом прекращают свое существование, не имея возможности двигаться по уже «выгоревшему участку». Но на участках живого организма одновременно протекает множество биомеханических процессов – локомоторных, кровеобеспечивающих, метаболических, ростовых, морфогенетических и пр., а потому, моделируя их автоволнами, теоретик сталкивается со следующей проблемой взаимного уничтожения автоволн. Один автоволновой процесс, двигаясь по рассматриваемому участку организма за счет непрерывного выжигания на нем энергетических запасов, делает эту среду невозбудимой для других автоволн на некоторое время до тех пор, пока на данном участке не восстановятся запасы энергии для их существования. В живом веществе эта проблема особенно актуальна еще и потому, что виды энергохимических запасов в нем сильно унифицированы (в организмах имеется универсальная энергетическая валюта – АТФ). Поэтому трудно полагать, что факт одновременного существования многих процессов на одном участке в организме обеспечивается тем, что каждый автоволновой процесс в организме движется за счет выжигания своего специфического вида энергии, не выжигая энергии для других. Для солитонных моделей этой проблемы взаимного уничтожения сталкивающихся в одном месте биомеханических процессов не существует в принципе, поскольку солитоны в силу их способности к неразрушающим столкновениям спокойно проходят друг сквозь друга и на одном участке одновременно их число может быть как угодно велико. По нашим данным, для моделирования биосолитонных феноменов живого вещества особое значение имеют солитонное уравнение синус-Гордона и его обобщения.

Как известно, в полидоменных средах (магнетики, сегнетоэлектрики, сверхпроводники и пр.) солитоны выступают в качестве междоменных стенок. В живом веществе феномен полидоменности играет важную роль в морфогенетических процессах. Как и в других полидоменных средах, в полидоменных биологических средах он связан с классическим принципом Ландау-Лифшица минимизации энергии в среде. В этих случаях солитонные междоменные стенки оказываются местами повышенной концентрации энергии, в которых зачастую особенно активно протекают биохимические реакции.

Способность солитонов играть роль паровозиков, транспортирующих порции вещества в нужное место в пределах солитонной среды (организма) по законам нелинейной динамики, также заслуживает всяческого внимания в связи с биоэволюционными и физиологическими проблемами. Добавим, что биосолитонная физическая энергия способна гармонично сосуществовать в живом организме с известными химическими видами его энергии. Развитие концепции биосолитонов позволяет, в частности, открыть исследовательскую «охоту» в биологии за аналогами разных видов солитонов — бризеров, вобблеров, пульсонов и пр., выведенных математиками «на кончике пера» при анализе солитонных уравнений и затем обнаруживаемых физиками в природе. Многие колебательные и волновые физиологические процессы могут в итоге получить для своего описания содержательные солитонные модели, связанные с нелинейным, солитонным характером биополимерного живого вещества.

Например, это относится к базовым физиологическим движениям живого биополимерного вещества типа сердечных биений и т.п. Напомним, что у человеческого эмбриона в возрасте трех недель, когда он имеет рост всего в четыре миллиметра, первым приходит в движении сердце. Начало сердечной деятельности обусловлено какими-то внутренними энергетическими механизмами, так как в это время у сердца еще нет никаких нервных связей для управления этими сокращениями и оно начинает сокращаться, когда еще нет крови, которую надо перекачивать. В этот момент сам эмбрион представляет собой по существу кусочек полимерной слизи, в которой внутренняя энергия самоорганизуется в энергоэкономичные пульсации. Аналогичное можно сказать о возникновении сердечных биений в яйцах и икринках животных, куда подвод энергии извне минимизирован существованием скорлупы и других изолирующих покровов. Подобные формы энергетической самоорганизации и самолокализации известны в полимерных средах, в том числе, небиологического типа и по современным представлениям имеют солитонную природу, поскольку солитоны являются наиболее энергоэкономичными (недиссипативными или малодиссипативными) самоорганизующимися структурами пульсирующего и иного характера. Солитоны реализуются во множестве природных сред, окружающих живые организмы: твердых и жидких кристаллах, классических жидкостях, магнетиках, решетчатых структурах, плазме и пр. Эволюция живого вещества с ее механизмами естественного отбора не прошло мимо уникальных свойств солитонов и их ансамблей.

Имеют ли данные материалы какое-либо отношение к синергетике? Да, безусловно. Как определено в монографии Хагена /6, с.4/, «в рамках синергетики изучается такое совместное действие отдельных частей какой-либо неупорядоченной системы, в результате которого происходит самоорганизация – возникают макроскопические пространственные, временные или пространственно-временные структуры, причем рассматриваются как детерминированные, так и стохастические процессы». Существует много типов нелинейных процессов и систем, которые изучаются в рамках синергетики. Курдюмов и Князева /7, с.15/, перечисляя ряд этих типов, специально отмечают, что среди них одним из важных и интенсивно изучаемых являются солитоны. В последние годы начал издаваться международный журнал «Хаос, солитоны и фракталы» («Chaos, Solitons & Fractals»). Солитоны, наблюдаемые в самых разных природных средах, представляют собой яркий пример нелинейного кооперативного поведения множества элементов системы, приводящего к формированию специфических пространственных, временных и пространственно-временных структур. Наиболее известный, хотя далеко не единственный вид таких солитонных структур – описанная выше самолокализующаяся устойчивая по форме одногорбая локальная деформация среды, бегущая с постоянной скоростью. Солитоны активно используются и изучаются в современной физике. С 1973 года, начиная с работ Давыдова /8/, солитоны применяются также в биологии для моделирования молекулярных биологических процессов. В настоящее время во всем мире имеется множество публикаций по применению таких «молекулярных солитонов» в молекулярной биологии, в частности, для осмысления процессов в белках и ДНК. Наши работы /3, 9/ явились первыми в мировой литературе публикациями на тему «надмолекулярных солитонов» в биологических явлениях надмолекулярного уровня. Подчеркнем, что из существования молекулярных биосолитонов (которое, по мнению многих авторов, еще предстоит доказать) никак не следует существование солитонов в кооперативных биологических надмолекулярных процессах, объединяющих мириады молекул.

Петухов Сергей Валентинович
Д.ф.-м.н., к.б.н.,
Отдел биомеханики Института машиноведения РАН,
petoukhov@hotmail.com

ЛИТЕРАТУРА:

  1. Додд Р. и др. Солитоны и нелинейные волновые уравнения. М., 1988, 694 с.
  2. Каменский В.Г. ЖЭТФ, 1984, т.87, вып. 4(10), с. 1262-1277.
  3. Петухов С.В. Биосолитоны. Основы солитонной биологии. – М., 1999, 288 с.
  4. Gray J. Animal locomotion. London, 1968.
  5. Петухов С.В. Бипериодическая таблица генетического кода и число протонов. – М., 2001, 258 с.
  6. Хаген Г. Синергетика. – М., Мир, 1980, 404 с.
  7. Князева Е.Н., Курдюмов С.П. Законы эволюции и самоорганизации сложных систем. — М., Наука, 1994, 220 с.
  8. Давыдов А.С. Солитоны в биологии. – Киев, Наукова Думка, 1979.
  9. Петухов С.В. Солитоны в биомеханике. Депонировано в ВИНИТИ РАН 12 февраля 1999 г, №471-В99. (Указатель ВИНИТИ «Депонированные научные работы», № 4 за 1999 г.)


Summary. The report discusses the opportunities opened up by a solitonic approach to supramolecular biology, first of all, for modeling a wide class of natural wave movements in living organisms. The results of author’s research demonstrate the existence of soliton-like supramolecular processes in locomotor, metabolic and other manifestations of dynamic biomorphology on a wide variety of branches and levels of biological evolution.

Solitons, named sometimes « wave atoms », have unusual properties from the classical (linear) viewpoint. They have ability for self-organizing: auto-localizations; catching of energy; formation of ensembles with dynamics of pulsing and other character. Solitons were known in plasma, liquid and firm crystals, classical liquids, nonlinear lattices, magnetic and others poly-domain matters, etc. The reveal of biosolitons points out that biological mechano-chemistry makes living matter as solitonic environment with opportunities of various physiological use of solitonic mechanisms. The report is based on the books: S.V. Petoukhov «Biosolitons. Bases of solitonic biology », Moscow, 1999 (in Russian).


Петухов С.В., Солитоны в кооперативных биологических процессах надмолекулярного уровня // «Академия Тринитаризма», М., Эл № 77-6567, публ.13240, 21.04.2006

[Обсуждение на форуме «Наука»]

В начало документа

© Академия Тринитаризма
info@trinitas.ru

Warning: include(/home/trinita2/public_html/footer.php) [function.include]: failed to open stream: No such file or directory in /home/trinita2/public_html/rus/doc/0016/001b/00161237.htm on line 152

Warning: include() [function.include]: Failed opening '/home/trinita2/public_html/footer.php' for inclusion (include_path='.:/opt/alt/php53/usr/share/pear:/opt/alt/php53/usr/share/php') in /home/trinita2/public_html/rus/doc/0016/001b/00161237.htm on line 152